

BIOFUELS PRODUCTION AT LOW - ILUC RISK FOR EUROPEAN SUSTAINABLE BIOECONOMY

### D 3.3 Replication potential of case studies examined in BIKE

Dissemination level: PU

Date 30/04/2023



*This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 952872* 



### Document control sheet

| Project             | BIKE – Biofuels production at low – Iluc risk for European sustainable bioeconomy |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| Call identifier     | H2020-LC-SC3-2020–RES-IA-CSA                                                      |  |  |  |  |  |
| Grant Agreement N°  | 952872                                                                            |  |  |  |  |  |
| Coordinator         | Renewable Energy Consortium for Research and Demonstration (RE-CORD)              |  |  |  |  |  |
| Work package N°     | 3                                                                                 |  |  |  |  |  |
| Work package title  | Operational capacity for sustainable biofuels in Europe                           |  |  |  |  |  |
| Work package leader | RE-CORD                                                                           |  |  |  |  |  |
| Document title      | Replication potential of case studies examined in BIKE                            |  |  |  |  |  |
| Lead Beneficiary    | RE-CORD                                                                           |  |  |  |  |  |
| Dissemination level | PU                                                                                |  |  |  |  |  |
| Authors             | Caterina Borchi, Andrea Salimbeni                                                 |  |  |  |  |  |
| Contributors        | All partners                                                                      |  |  |  |  |  |
| Reviewer(s)         | David Chiaramonti                                                                 |  |  |  |  |  |
| Issue date          | 05/05/2023                                                                        |  |  |  |  |  |

## S BIKE TABLE OF CONTENTS

| Executive summary                                                               | 8    |
|---------------------------------------------------------------------------------|------|
| 1 Introduction                                                                  | 9    |
| 1.1 Low ILUC risk feedstock potential availability in EU regions                | 9    |
| 1.2 Overview of conversion technologies                                         | 12   |
| 2 Methodology                                                                   | 13   |
| 2.1 Location and characteristics of biorefineries                               | 14   |
| 2.2 Value chain 1 – Cultivation in unused, abandoned or severely degraded lands | 15   |
| 2.3 Value chain 2 – Productivity increases from improved agricultural practices | 24   |
| 3 Results                                                                       | 39   |
| 3.1 Perennial grasses for bioethanol                                            | 39   |
| 3.1.1 Scenario 1 – 70 km distance for biomass supply                            | 41   |
| 3.1.2 Scenario 2 – 150 km distance for biomass supply                           | 45   |
| 3.2 Castor oil for renewable diesel                                             | 51   |
| 3.2.1 Scenario 1 – 230 km distance from biorefineries for biomass supply        | 51   |
| 3.2.2 Scenario 2 – 500 km distance from biorefineries for biomass supply        | 53   |
| 3.3 Brassica Carinata oil for renewable diesel                                  | 56   |
| 3.3.1 Scenario 1 – Brassica Carinata as a summer cover crop                     | 57   |
| 3.3.2 Scenario 2 – Brassica Carinata as a winter cover crop                     | 61   |
| 3.4 Biogas Done Right (BDR) model for biomethane-to-liquid production           | 64   |
| 3.4.1 Italy                                                                     | 64   |
| 3.4.2 France                                                                    | 65   |
| 3.4.3 Germany                                                                   | 67   |
| 3.4.4 UK                                                                        | 68   |
| 5 Discussion                                                                    | 71   |
| 5 Conclusions                                                                   | . 74 |
| 6 Supplementary data                                                            | 76   |
| Bibliography                                                                    | . 82 |



### LIST of FIGURES

| Figure 1. Map of underutilized lands in Europe. Source: Hirschmugl et al., 2021                                           |
|---------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Left: model predictions of the occurrence of winter cover crops (CCs) in Europe (season                         |
| 2016 – 2017). Right: Three zooms: Predictions on the East, West and South of France (a, b and c,                          |
| respectively)11                                                                                                           |
| Figure 3. Summary of the adopted methodology13                                                                            |
| Figure 4. Map of existing and planned biorefineries in Europe                                                             |
| Figure 5.Example of information related to an Italian HVO plant stored in the attribute table. 15                         |
| Figure 6. Underutilized lands in Europe. Source: BIOPLAT                                                                  |
| Figure 7. Agro-ecological suitability of Switchgrass under high level inputs and rain-fed condition                       |
| (climate of 1981–2010) 17                                                                                                 |
| Figure 8. Detail of Switchgrass attainable yield (26 dry tons/hectare) in an underutilized piece of                       |
| land in Northern Italy                                                                                                    |
| Figure 9. Map of bioethanol plants in Europe 19                                                                           |
| Figure 10. Experimental trials' locations of castor bean cultivation in Mediterranean regions of                          |
| Europe                                                                                                                    |
| Figure 11. Map of renewable diesel plants in Mediterranean regions of Europe included in the                              |
| assessment                                                                                                                |
| Figure 12. Sequential cropping calendars for winter cereals (a) and corn/cotton (b)25                                     |
| Figure 13. New crop calendar for corn/cotton cultivation (Brassica winter cover crop)                                     |
| Figure 14. New crop calendar for winter cereals (Brassica summer cover crop)26                                            |
| Figure 15. Administrative subdivision at NUTS 3 level of Spain, France, Italy, and Greece 27                              |
| Figure 16. Climate suitability of Winter Brassica Carinata in Europe                                                      |
| Figure 17. Climate suitability of Summer Brassica Carinata in Europe                                                      |
| Figure 18. Biorefineries considered for Brassica Carinata case study                                                      |
| Figure 19. Anaerobic digestion potential in 2030 per feedstock per country. Source: A Gas For                             |
| Climate report, 2022                                                                                                      |
| Figure 20. System Development Map. Source: ENTSOG,2023                                                                    |
| Figure 21. Natural gas total demand (2020) of the 8 top European countries                                                |
| Figure 22. Natural gas mean storage capacity (2020) of the 8 top European countries                                       |
| Figure 23. Biomethane plants in Europe. Source: EBA (2021)                                                                |
| Figure 24. Location of biogas plants in France (a) and UK (b) and corresponding output                                    |
| Figure 25. Development of the number of biogas plants and the total installed electric capacity                           |
| in megawatt [MW] in Germany (as of 10/2022)                                                                               |
| Figure 26. ASF distribution, $Wn/n = (1-\alpha)2 \alpha n-1$ , FT selectivities (a) and high $\alpha$ -values favour long |
| chain products (b)                                                                                                        |
| Figure 27. Switchgrass attainable yield in Europe                                                                         |
| Figure 28. Miscanthus attainable yield in Europe                                                                          |
| Figure 29. Switchgrass attainable yield in European underutilized lands, second-generation                                |
| bioethanol plants and 70 km supply radius                                                                                 |
| Figure 30. Miscanthus attainable yield in European underutilized lands, second-generation                                 |
| bioethanol plants and 70 km supply radius42                                                                               |
| Figure 31. Switchgrass attainable yield in European underutilized lands, first-generation                                 |
| bioethanol plants with possibility of upgrade and 70 km supply radius                                                     |
| Figure 32. Switchgrass attainable yield in European underutilized lands, second-generation                                |
| bioethanol plants and 150 km supply radius45                                                                              |

## 🌀 BIKE

| Figure 33. Miscanthus attainable yield in European underutilized lands, second-generation        |
|--------------------------------------------------------------------------------------------------|
| bioethanol plants and 150 km supply radius46                                                     |
| Figure 34. HVO biorefineries in Mediterranean regions, 230 km supply radius and castor mean      |
| seed yield52                                                                                     |
| Figure 35. Biodiesel refineries in Mediterranean regions, 230 km supply radius and castor mean   |
| seed yield53                                                                                     |
| Figure 36. HVO and biodiesel refineries in Mediterranean regions, 500 km supply radius and       |
| castor mean seed yield54                                                                         |
| Figure 37. Brassica napus attainable yield in European mediterranean regions                     |
| Figure 38. HVO operational refineries, areas of 230 km for biomass supply and estimated annual   |
| oil production per sub-region57                                                                  |
| Figure 39. HVO planned refineries, areas of 230 km for biomass supply and estimated annual oil   |
| production per sub-region58                                                                      |
| Figure 40.Biodiesel refineries, areas of 230 km for biomass supply and estimated annual oil      |
| production per sub-region                                                                        |
| Figure 41. HVO and biodiesel refineries, areas of 500 km for biomass supply and estimated annual |
| oil production per sub-region60                                                                  |
| Figure 42. HVO and biodiesel refineries, areas of 230 km for biomass supply and estimated annual |
| oil production per sub-region61                                                                  |
| Figure 43. Installed capacity and distribution of biogas plants in Italy64                       |
| Figure 44. Installed capacity and distribution of biogas plants in France                        |
| Figure 45. Installed capacity and distribution of biogas plants in UK                            |
| Figure 46. % agricultural area with less than 1.5 % SOC71                                        |



### LIST of TABLES

| Table 1. List of databases for determination of biorefineries location in Europe.       14         |
|----------------------------------------------------------------------------------------------------|
| Table 2. Example of the data layers for attainable yield obtained from GAEZ for future climates    |
| for Switchgrass. Each row represents a unique combination of time-period, climate model and        |
| RCP                                                                                                |
| Table 3. List of operational second-generation bioethanol refineries in Europe                     |
| Table 4. Selection of papers regarding experimental trials of castor bean cultivation              |
| Table 5. List of biorefineries considered for the analysis of the Castor bean case study           |
| Table 6. Summary table for calculation of an indicator based on distance and lignocellulosic crops |
| energy density                                                                                     |
| Table 7. Summary table for calculation of supply radius for castor bean case study                 |
| Table 8. List of primary crops adopted in the study and corresponding land use and scenario. 25    |
| Table 9. List of online databases that store information about hectares of arable land dedicated   |
| to crop cultivation                                                                                |
| Table 10. Example of collected data: number of hectares in Greece used for corn, cotton, and       |
| winter cereals cultivation (2019)                                                                  |
| Table 11. Potential production from sequential cropping by 2030. Source: A Gas For Climate         |
| Report, 2022                                                                                       |
| Table 12. Number of biomethane plants and total production capacity of the top four European       |
| countries                                                                                          |
| Table 13. List of online databases used to collect data about number and production capacity of    |
| biogas plants in the target countries                                                              |
| Table 14. Excerpt from the excel file downloaded for Italy and containing information about        |
| location and capacity of the biogas plants                                                         |
| Table 15. Total number of biogas plants and installed capacity of the four selected target         |
| countries                                                                                          |
| Table 16. Summary of the outputs obtained from data elaboration of perennial grasses case          |
| study                                                                                              |
| Table 17. Switchgrass and Miscanthus potential production within 70 km distance from second-       |
| generation ethanol plants                                                                          |
| Table 18. Switchgrass and Miscanthus potential production within 70 km distance from first-        |
| generation ethanol plants                                                                          |
| Table 19. Switchgrass and Miscanthus potential production within 150 km distance from              |
| operational second-generation ethanol plants                                                       |
| Table 20. Switchgrass and Miscanthus potential production within 150 km distance from first-       |
| generation ethanol plants                                                                          |
| Table 21. Scenario 1: summary of promising case studies identified and corresponding potential     |
| bioethanol production                                                                              |
| Table 22. Scenario 2: summary of promising case studies identified and corresponding potential     |
| bioethanol production                                                                              |
| Table 23. Summary of the outputs obtained from data elaboration of castor bean case study. 51      |
| Table 24. Castor bean oil potential production within a 230 km supply radius from HVO refineries.  |
|                                                                                                    |
| Table 25. Castor bean oil potential production within a 230 km supply radius from biodiesel        |
| refineries53                                                                                       |



| Table 26. Castor bean oil potential production within a 500 km supply radius from HVOI and biodiesel refineries |
|-----------------------------------------------------------------------------------------------------------------|
| Table 27. Summary of most promising case studies identified and potential HVO/biodiesel                         |
| production from castor oil55                                                                                    |
| Table 28. Summary of the outputs obtained from data elaboration of brassica carinata case study.                |
|                                                                                                                 |
| Table 29. Estimated annual brassica oil production per HVO operational refinery and 230 km                      |
| Table 20. Estimated annual brassics of meduation per LIV/O planned refinence and 220 km distance                |
| for biomass supply                                                                                              |
| Table 31. Estimated annual brassica oil production per biodiesel refinery                                       |
| Table 32. Estimated annual oil production considering brassica as a summer cover crop and a                     |
| supply radius of 500km from biorefineries                                                                       |
| Table 33. Estimated annual oil production considering brassica as a winter cover crop and a                     |
| supply radius of 230km from biorefineries                                                                       |
| Table 34. Summary of most promising case studies identified and potential HVO/biodiesel                         |
| production from brassica oil                                                                                    |
| Table 35. Calculation of biomethane and liquid fuels potential production in Italy                              |
| Table 36. Calculation of biomethane and liquid fuels potential production in France                             |
| Table 37. Calculation of biomethane and liquid fuels potential production in Germany                            |
| Table 38. Calculation of biomethane and liquid fuels potential production in UK                                 |
| Table 39. List of second-generation bioethanol plants planned in Europe by 2030                                 |
| Table 40. List of first-generation bioethanol plants in Europe and possibility of upgrade to second-            |
| generation77                                                                                                    |
| Table 41. List of HVO plants in Europe.    81                                                                   |

# 

Executive summary

In this task, RECORD, with the support of BIKE partners, assessed the possibility of replicating the four BIKE case studies, at European level. The assessment study has been performed considering two main criteria for the application of the proposed solutions: the low-ILUC risk feedstock and climate positive farming options, identified in WP2, and the technologies adopted in the existing biofuels production plants, identified in WP3. The replicability potential has been evaluated considering an application in the short/mid-term, thus based on existing infrastructure, technologies, and biofuels production facilities. The assessment has also been performed in strict relationship with WP6 activities, where open labs on real experiences have been organised. After a description of the adopted methodology, a theoretical estimation of Low ILUC biofuels production potential has been performed for each of the four case studies, which are: (i) perennial crops cultivation in unused lands for lignocellulosic bioethanol production; (ii) castor cultivation in arid or unused lands for oil extraction and renewable diesel production; (iii) brassica carinata cultivation as cover crop for oil extraction and renewable diesel production; (iv) biogas done right model (BDR) application for biomethane injection into the grid and conversion into liquid biofuels. The determination of the replicability potential enabled to identify and select the most promising areas for each case study, thus allowing for development of a preliminary outline in which real opportunities for biofuels in Europe are exhibited.

## 🌀 ВІКЕ

### 1 Introduction

Conventional biofuels obtained from crops that could be used in the production of food and/or feed have raised concerns about their impact on food prices, and on the use of land for agricultural and forest products. These issues could be mitigated using advanced biofuels, which are promoted by the European Renewable Energy Directive (REDII) <sup>1</sup> entered into force in December 2018. The latter aims to establish a framework for the development of renewable energy over the next decade, setting an overall binding target for Renewable Energy Sources consumption of at least 32% by 2030, which Member States must achieve together. Within the same year, the REDII mandates that Member States must require fuel suppliers to ensure that at least 14% of the transport sector's energy consumption comes from renewable sources. The REDII also contains several measures to limit the risks of indirect land-use change (ILUC):

- The REDII defines low ILUC-risk biofuels and the Commission published a Delegated Regulation (EU) 2019/807 which defines high ILUC-risk fuels and sets out criteria to identify low ILUC-risk biofuels.
- The Directive allows those biofuels certified as low ILUC-risk to continue contributing to the 14% renewable energy target.

According to the Delegated Regulation, the concept of low Indirect Land Use Change (ILUC) risk biofuels relies on *producing additional biomass*, either through additional yields in existing crop systems, or through new crop production on formerly unused land, abandoned agricultural land or severely degraded land. In this context, a detailed assessment of both low ILUC-risk pathways (i.e., unused land and increased productivity) and their potential of replicability in Europe will add value to the policy discussion and provide some foundation to analyses of EU renewables targets and its future energy mix.

#### 1.1 Low ILUC risk feedstock potential availability in EU regions

The activities of BIKE are organised around two ILUC-risk pathways that match the definition for additionality. In the following paragraph, the two value chains will be presented, together with a preliminary overview of their potential of replicability in European regions.

#### Cultivation in unused, abandoned or severely degraded lands

This value chain involves biomass feedstock options that can be cultivated on unused, abandoned or severely degraded lands. To avoid fuel versus food debate, in this work we only considered lands that have not been used in the past five years, which we will refer to as *underutilized lands*. The area of underutilized croplands in Europe is estimated to be approximately 5.3 million hectares (Hirschmugl et al., 2021) and is distributed throughout the continent, with significant clusters in central and eastern regions (Figure 1).

<sup>&</sup>lt;sup>1</sup> https://joint-research-centre.ec.europa.eu/welcome-jec-website/reference-regulatory-framework/renewableenergy-recast-2030-red-ii en





Figure 1. Map of underutilized lands in Europe. Source: Hirschmugl et al., 2021.

The BIKE project has identified two case studies that might potentially be developed in the underutilized lands: perennial grasses, which can be grown throughout the EU for the production of bioethanol, and castor beans, which can be grown in the Mediterranean agroclimatic regions for the production of renewable diesel.

Switchgrass and miscanthus are two perennial grasses which have received particular interest during the last decade as bioenergy crops. Switchgrass is a warm-season grass that is native to North America and has a lifespan of 10-20 years. It is adaptable to different soils, even marginal lands, and has low pest and disease incidence, minimal soil erosion, and low water and nutrient demands. The annual yield of switchgrass in Europe varies depending on location, with the highest yields recorded in southern Europe of around 23 tons/ha (Lasorella et al., 2011). Miscanthus is a perennial grass from East Asia that can produce biomass for up to 15 years after establishment. It has high survival percentages, even in marginal lands, and breeding efforts are underway to develop new genotypes that can achieve even higher yields. Miscanthus can be grown successfully across Europe, with yields ranging from 10 to 36 tons/ha depending on circumstances.

Castor (*Ricinus communis L.*), a valuable oilseed crop that can be either annual or perennial, is indigenous in the south-eastern Mediterranean Basin, Eastern Africa, and India, but it can grow well in a wide range of ecosystems (from temperate to tropical and subtropical regions). Castor bean has a very high percentage of seed oil content (40-55%), higher than other normally used





oil crops such as soybean (15-20%), sunflower (25-35%), or rapeseed (38-46%). The crop can cope with several constraints such as drought, heat, saline soil conditions and previous field studies demonstrate its suitability to grow it in South Europe (Anastasi et al., 2015; Zanetti et al., 2017). Annual seeds yield in the Mediterranean region varies from 2 to 5 tons/ha.

#### Productivity increases from improved agricultural practices

This value chain will analyze biomass feedstock options that can be grown with a sequential cropping practice. Sequential cropping (also referred to as multicropping, double cropping or growing a "harvestable cover crop") is the cultivation of a second crop before or after the harvest of the main food or feed crop on the same agricultural land during an otherwise fallow period. According to a recent study (Fendrich et al., 2023), which represents a first effort to obtain a cover crop map at European scale (Figure 2), the use of cover crops still represents a small percentage of the total EU cropland area (8.9% in 2016). Despite cover crops (CC) playing a pivotal role in maintaining soil health, their adoption is currently an underused farming practice which is likely to increase in the EU in the future.



Figure 2. Left: model predictions of the occurrence of winter cover crops (CCs) in Europe (season 2016 – 2017). Right: Three zooms: Predictions on the East, West and South of France (a, b and c, respectively).

The two case studies identified for this value chain are: (i) brassica carinata for renewable diesel production in the Mediterranean regions and (ii) Biogas Done Right model (BDR) for biomethaneto-liquid fuels in all European territory.

Ethiopian mustard (*Brassica carinata A. Braun*) is an annual crop closely related to rapeseed (*Brassica Napus*). Compared to rapeseed, it presents several advantages, including greater



resilience, higher resistance to water stress conditions, a reduction in nutrient requirements that results in a significant reduction in nitrogen supply, greater tolerance to some parasites (Basili & Rossi, 2018; Del Gatto et al., 2015). The species can be cultivated in the Mediterranean region as a spring or winter crop, even though it is crucial to notice that it cannot cope with frost. Always referring to Mediterranean regions, the average yields range from 1.5 to 3.0 tons/ha and the oil content is around 40%. The oil is rich in erucic and linoleic acid and well suited for biofuel production.

The Biogas Done Right Model (BDR) is based on the production of biomethane from sequential cropping methods, further biomethane injection into the grid, and processing in centralized biomethane-to-liquid conversion plants. Fisher-Tropsch and MeOH plants currently represent the most promising types of centralized plants at commercial scale. In the present work, estimation of biomethane potential production is based on the findings of a previous study (Schellenbach, 2022) that took into account the regional average yields of the most prevalent cover crops in Europe, represented by triticale, barley, green rye, and ryegrass. In the Methodology chapter, more detailed information about this case study will be provided.

#### 1.2 Overview of conversion technologies

In the present work, three main types of biofuels have been considered: cellulosic ethanol, renewable diesel (HVO and biodiesel) and biomethane.

Cellulosic ethanol (also referred to as "second-generation" ethanol) is a biofuel made by hydrolysis and fermentation of lignocellulosic biomass. In 2022, Europe accounted for a total lignocellulosic ethanol capacity of 50 million liters. On the other side, first-generation ethanol, produced via fermentation of plant sugars and starches and obtained from crops such as wheat and corn, is considered as "non-advanced" but accounted for the 99% of the total bioethanol production, with 3.3 billion liters of total capacity. In the present work, both type of refineries has been considered in the assessment, assuming that for first-generation plants an upgrading to second-generation would be possible by 2040.

Hydrotreated Vegetable Oil (HVO) is a biofuel made by the hydrocracking or hydrogenation of vegetable oil. Hydrocracking breaks big molecules into smaller ones using hydrogen while hydrogenation adds hydrogen to molecules. In 2022, Europe accounted for 3.5 billion liters of HVO total capacity. In this report, the conversion of castor and brassica carinata vegetable oils into green diesel using the Hydrotreated Vegetable Oil (HVO) conversion system has been evaluated. Alongside with HVO conversion technology, the replicability potential of castor and brassica carinata case studies has also been evaluated considering the more established transesterification conversion technology for the production of FAME. In 2022, Europe accounted for a total production capacity of 12 billion liters of FAME. These types of plants have been considered for the assessment only in those areas and countries (e.g., Greece) in which HVO technology is not yet established at a commercial scale.

Biomethane is the CH<sub>4</sub> obtained from any biomass stream processed by the integration of anaerobic digestion and biogas purification (i.e., separation of CH<sub>4</sub> and CO<sub>2</sub>) processes. The biomethane is fully equivalent to the fossil methane currently adopted for light vehicles transport, household, and industrial thermal energy supply. In 2020, biogas production in Europe



was of 15.8 billion cubic meters, while biomethane production was of 2.4 billion cubic meters. The majority of the produced gas (85%) has been used for electricity, while only the 15% left has been used for the transport sector. In this study, both biomethane and biogas plants have been considered in the assessment, assuming that for the biogas plants an upgrading would be feasible by 2030.

### 2 Methodology

The methodology employed involved the overlay and elaboration of available, open access data from different sources (e.g., WebGIS, satellite monitoring services, open modelling platforms, databases, literature). Collected data were processed within a Geographical Information System (GIS) framework in order to:

- 1) Simulate the potential attainable yield of the target crops for cultivation in European underutilized lands or as cover crops.
- 2) Identify the suitable biorefineries in the case study areas.
- 3) Evaluate the potential biomass production that could be achieved within a given distance from biorefineries.
- 4) Select the most promising case studies for the two value chains.



The approach utilised to identify location and characteristics of biorefineries and evaluate the potential for replication of the two value chains is explained in detail in the following sections.



#### 2.1 Location and characteristics of biorefineries

The identification of refineries that could produce bioethanol, HVO, biodiesel relies on combined information gathered from different databases (Table 1).

Table 1. List of databases for determination of biorefineries location in Europe.

| Biorefinery type             | Source                                    |
|------------------------------|-------------------------------------------|
| First-generation bioethanol  | BIOPLAT <sup>2</sup> , ePure <sup>3</sup> |
| Second-generation bioethanol | BIOPLAT, IEA <sup>4</sup>                 |
| HVO                          | BIOPLAT, IEA                              |
| Biodiesel                    | BIOPLAT, EBB⁵                             |

The process of integrating data from multiple sources led to the creation of a layer in which existing and planned biorefineries are displayed (Figure 4). A total of 19 HVO plants (10 operational, 8 planned and 1 under construction), 79 operational biodiesel plants, 25 second-generation bioethanol plants (13 operational and 12 planned), and 118 first-generation bioethanol plants were identified.



Figure 4. Map of existing and planned biorefineries in Europe.

<sup>&</sup>lt;sup>2</sup> https://bioplat.eu/, Horizon 2020 project, Grant Agreement N° 818083

<sup>&</sup>lt;sup>3</sup> <u>https://www.epure.org/about-epure/who-we-are/</u>, Eu Ethanol plants – ePure, 2022

<sup>&</sup>lt;sup>4</sup> <u>https://demoplants.best-research.eu/</u>, IEA Bioenergy, Task 39

<sup>&</sup>lt;sup>5</sup> <u>https://ebb-eu.org/our-members/</u>, European Biodiesel Board

First-generation ethanol plants have undergone an additional screening process aimed at identification of all those plants that could be upgraded to second generation by 2040. This operation was based on the inclusion of those plants only dedicated to biofuels production and the exclusion of all bioethanol plants associated to sugar refineries, distilleries, wine, and vinegar industries. Following this screening, 47 first generation ethanol plants that could potentially be upgraded were found.

In addition to geographical data, the attribute table of the created layer also includes collected data on plants' capacity and input feedstocks (Figure 5).



Figure 5.Example of information related to an Italian HVO plant stored in the attribute table.

### 2.2 Value chain 1 – Cultivation in unused, abandoned or severely degraded lands

The first task of assessing replicability potential of value chain one involved the identification of underutilized lands in Europe, which relies on BIOPLAT<sup>2</sup>, a web-based platform that helps identify abandoned croplands in Europe. The platform is designed to support sustainable use of underutilized lands for bioenergy production and serves as a source of information and decision-making tool for stakeholders. It includes maps generated from high-resolution data, such as Copernicus high resolution layers (HRLs), and time series data from Sentinels and other satellites. In particular, the pan-European layer of potentially underutilized land shows all land that has not been used in the previous five years and was created using a customized methodology based on Landsat 8 and Sentinel-2 satellite imagery from 2015-2019 (Figure 6).





Figure 6. Underutilized lands in Europe. Source: BIOPLAT.

The two sections below provide more detailed information on the methodology employed to assess the replicability of each of the two case studies of the first value chain.

#### <u>Case study 1 – Perennial crops for bioethanol</u>

#### Yield modelling

The study has been performed on the whole EU territory. Attainable yields of the target crops – switchgrass and miscanthus – have been simulated using GAEZ v4<sup>6</sup> (Global Agro-Ecological Zones), a modeling system co-developed by the Food and Agriculture Organization of the United Nations (FAO) and the International Institute for Applied Systems Analysis (IIASA). The information provided by GAEZ is organized into six categories: (1) land and water resources, (2) agro-climatic resources, (3) agro-climatic potential yield, (4) suitability and attainable yield, (5) actual yields and production, and (6) yield and production gaps.

To model the potential biomass production of the selected crops, data from the fourth category (suitability and attainable yield) of GAEZ layers was utilized. This section presents the results of the GAEZ crop suitability and productivity assessment, which combines agro-climatic potential yields with soil/terrain evaluation results, including yield reduction factors caused by soil limitations and prevailing terrain-slope conditions. Specifically, each land unit is individually assessed and assigned a suitability rating (Figure 7), as well as a simulated attainable yield (i.e., the highest yield which could be obtained in practice).

<sup>&</sup>lt;sup>6</sup> <u>https://gaez.fao.org/pages/data-viewer</u>

## 🌀 BIKE



Figure 7. Agro-ecological suitability of Switchgrass under high level inputs and rain-fed condition (climate of 1981–2010).

Yield estimates are available in GAEZ for different soil management scenarios and for different time periods. In this work, attainable yields were modeled based on the following variables:

- Management scenario: high input
- Time period: 2011-2040
- Water supply: rainfed

According to GAEZ, the "high input scenario" implies that the farming system is primarily marketoriented with the aim of commercial production; based on this definition, the high input scenario was chosen considering that most agricultural systems in Europe fall under this category. As regards the 2011-2040 time period, multiple forecasts are available in GAEZ based on different climate models and different Representative Concentration Pathways (RCPs). Attainable yields were first downloaded for all climate models and all RCPs available. Afterwards, the average attainable yield was computed by averaging first over the RCPs and then over the different climate models. Table 2 provides an example of the list of data layers downloaded for modelling of switchgrass attainable yield.



| Time Period | Climate Model  | RCP    | Сгор        | Water Supply | Input level |
|-------------|----------------|--------|-------------|--------------|-------------|
| 2011-2040   | NorESM1-M      | RCP8.5 | Switchgrass | Rainfed      | High        |
| 2011-2040   | NorESM1-M      | RCP6.0 | Switchgrass | Rainfed      | High        |
| 2011-2040   | NorESM1-M      | RCP4.5 | Switchgrass | Rainfed      | High        |
| 2011-2040   | NorESM1-M      | RCP2.6 | Switchgrass | Rainfed      | High        |
| 2011-2040   | MIROC-ESM-CHEM | RCP8.5 | Switchgrass | Rainfed      | High        |
| 2011-2040   | MIROC-ESM-CHEM | RCP6.0 | Switchgrass | Rainfed      | High        |
| 2011-2040   | MIROC-ESM-CHEM | RCP4.5 | Switchgrass | Rainfed      | High        |
| 2011-2040   | MIROC-ESM-CHEM | RCP2.6 | Switchgrass | Rainfed      | High        |
| 2011-2040   | IPSL-CM5A-LR   | RCP8.5 | Switchgrass | Rainfed      | High        |
| 2011-2040   | IPSL-CM5A-LR   | RCP6.0 | Switchgrass | Rainfed      | High        |
| 2011-2040   | IPSL-CM5A-LR   | RCP4.5 | Switchgrass | Rainfed      | High        |
| 2011-2040   | IPSL-CM5A-LR   | RCP2.6 | Switchgrass | Rainfed      | High        |
| 2011-2040   | GFDL-ESM2M     | RCP8.5 | Switchgrass | Rainfed      | High        |
| 2011-2040   | GFDL-ESM2M     | RCP6.0 | Switchgrass | Rainfed      | High        |
| 2011-2040   | GFDL-ESM2M     | RCP4.5 | Switchgrass | Rainfed      | High        |
| 2011-2040   | GFDL-ESM2M     | RCP2.6 | Switchgrass | Rainfed      | High        |

Table 2. Example of the data layers for attainable yield obtained from GAEZ for future climates for Switchgrass. Each row represents a unique combination of time-period, climate model and RCP.

Geospatial data obtained from GAEZ and BIOPLAT databases were then integrated. The attainable yield map obtained from GAEZ was overlaid onto the map of underutilized lands obtained from BIOPLAT, thereby allowing the assessment of potential biomass production in those lands classified as underutilized and also suitable for selected crops' cultivation. An example of this integration is reported in Figure 8.



Figure 8. Detail of Switchgrass attainable yield (26 dry tons/hectare) in an underutilized piece of land in Northern Italy.

## 🌀 BIKE

#### Selection of biorefineries

Figure 9 displays all bioethanol facility that is now active, planned, or under construction in the European Union, using both first- and second-generation conversion technology. Specifically, the replicability potential assessment has been conducted including:

- 13 operational second-generation ethanol plants;
- 12 planned second-generation ethanol plants;
- 47 first-generation ethanol plants with possibility of upgrade.

Further information related to operational second-generation ethanol plants can be found in Table 3. Further information related to planned second-generation ethanol plants and operational first-generation ethanol plants are available in Supplementary Data section.



Figure 9. Map of bioethanol plants in Europe.



Table 3. List of operational second-generation bioethanol refineries in Europe.

| Name                                | Country | City         | Production<br>capacity (t/y) | Notes            |
|-------------------------------------|---------|--------------|------------------------------|------------------|
| <b>Crescentino Bioethanol Plant</b> | Italy   | Crescentino  | 25,000                       | Commercial plant |
| AustroCel Hallein                   | Austria | Oberlam      | 30,000                       | Commercial plant |
| Futurol ARD                         | France  | Bazancourt   | 100                          | Pilot plant      |
| Futurol IFP                         | France  | Bucy-le-Long | 8,000                        | Demo plant       |
| Clariant AG                         | Germany | Straubing    | 1,000                        | Demo plamt       |
| Clariant Products RO                | Romania | Podari       | 50,000                       | Commercial plant |
| Inibicon Biomass Refinery           | Denmark | Kalundborg   | N.A.                         | Commercial plant |
| <b>Gothenburg Ethanol Plant</b>     | Sweden  | Goteborg     | 5,000                        | Demo plant       |
| <b>Borregaard Industries AS</b>     | Norway  | Sarpsborg    | 15,800                       | Commercial plant |
| Ornskoldsvik SEKAB Biorefinery      | Sweden  | Ornskoldsvik | 160                          | Demo plant       |
| St 1 Bionolix Hammeenlinna          | Finland | Jokioinen    | 800                          | Demo plant       |
| Chemopolis Oy                       | Finland | Oulu         | 5,000                        | Demo plant       |
| Etanolix Vantaa                     | Finland | Vantaa       | 1,000                        | Commercial plant |

#### Identification of supply radius from biorefineries

The following step consisted in the identification of a sustainable distance from biorefineries for biomass supply. Deliverable 2.2 from the FORBIO project<sup>7</sup> – which analyses different options for the development of a sustainable value chain for lignocellulosic ethanol production in underutilized lands of Sulcis region, Sardinia – has been used as a reference for this evaluation (Barsali et al., 2016).

In the considered supply chain, the material is chipped during the harvesting (forage harvester) and loaded into agricultural trailers that follow the machine in the field and deliver the biomass to a field storage or a middle storage (due to high volumes of biomass needed to produce lignocellulosic bioethanol, industrial plants typically do not have the storage capacity to store the entire seasonal production). Subsequently, transportation of material to bioethanol plant is done by vehicle with higher load capacity – such as road tractor (plus trailers) or semitrailers – and a transportation volume that ranges between 80 and 150 m<sup>3</sup>.

The assessment of replicability potential was conducted using two different scenarios: one with a supply radius of 70 km from biorefineries – identified in FORBIO Deliverable 2.2 – and one with a supply radius of 150 km from biorefineries, chosen to compare the potential biomass production when the distance from the plant is doubled.

<sup>&</sup>lt;sup>7</sup> <u>https://forbio-project.eu/</u>, Horizon 2020 project, Grant Agreement N°691846





#### Case study 2 – Castor oil for HVO

The study has been performed considering only mediterranean regions of Europe. In accordance with the methodology employed for the case study on perennial crops, the castor bean case study involved integrating geospatial data regarding underutilized lands and corresponding target crop attainable yield, subsequently calculating the potential oil production within a certain supply radius from suitable biorefineries.

#### Castor yield estimation in Mediterranean regions

Castor bean was not included in the GAEZ dataset or any other open modelling tools or platforms, therefore yield of this target crop in Mediterranean countries was retreived from available literature and compared with data produced from activities of the BIKE project. The screening of online literature databases led to the selection of seven experiences regarding experimental trials of castor cultivation, of which three set in Italy, two in Greece and two in Spain. Information about castor mean seed yield and mean oil content of the trials was collected and reported in Table 4.

| Nr. | Country | Area of<br>experiment | Mean seed yield<br>(t/ha) | Mean oil<br>content (%) | Source                    |
|-----|---------|-----------------------|---------------------------|-------------------------|---------------------------|
| 1   | Italy   | Ragusa                | 3.4                       | 47                      | (Anastasi et al., 2015)   |
| 2   | Italy   | Sassari               | 1.8                       | 47                      | (Laureti et al., 1998)    |
| 3   | Italy   | Pozzallo              | 3.1                       | N.R.*                   | (Patanè et al., 2019)     |
| 4   | Greece  | Tessaloniki           | 3.3                       | 51                      | (Koutroubas et al., 1999) |
| 5   | Greece  | Aliartos              | 2.2                       | 55                      | (Zanetti et al., 2017)    |
| 6   | Spain   | Gerona                | 1.3                       | N.R.*                   | (Capuano, 2008)           |
| 7   | Spain   | Cordoba               | 2.8                       | 47                      | (Cabrales et al., 2014)   |

Table 4. Selection of papers regarding experimental trials of castor bean cultivation.

\*Not Reported

The locations of the experiments listed in the above table are displayed in Figure 10.



Figure 10. Experimental trials' locations of castor bean cultivation in Mediterranean regions of Europe.



The replicability potential of castor oil production from cultivation on underutilized lands was therefore evaluated in Italy, Greece, and Spain, using for each country the lowest yield value given in literature. Specifically, Castor attainable yield was set at 1.8 tons seeds/hectare in all of the underutilized lands in Italy, at 2.2 tons seeds/hectare in all of the underutilized lands in Greece, and at 1.3 tons seeds/hectare in all of the underutilized lands in Spain.

#### Selection of biorefineries

Figure 11 shows the position of the biorefineries considered for determining the replicability potential of castor oil production. The assessment took into account five HVO plants, of which three located in Spain and two in Italy, and three biodiesel plants, located in those areas in which HVO technology is not established yet (i.e., Greece, Eastern Spain, South-eastern Italy). Additional information related to the HVO and biodiesel facilities included in this case study is listed in Table 5. Additional information related to all the HVO facilities in Europe is listed in Supplementary Data section.



Figure 11. Map of renewable diesel plants in Mediterranean regions of Europe included in the assessment.



 Table 5. List of biorefineries considered for the analysis of the Castor bean case study.

| Nr. | Name                             | Country | City                    | Status      | Input                                      | Output | Capacity<br>(t/y) |
|-----|----------------------------------|---------|-------------------------|-------------|--------------------------------------------|--------|-------------------|
| 1   | Eni raffineria di Gela           | Italy   | Gela                    | Operational | Soybean oil, UCO,<br>animal fats           | HVO    | 750,000           |
| 2   | Abengoa Biofuel plant            | Spain   | San Roque               | Operational | ational Organic residues and waste streams |        | 50,000            |
| 3   | La Rabida Energy Park            | Spain   | Palos de la<br>Frontera | Operational | N.A.                                       | HVO    | 50,000            |
| 4   | Complejo Industrial de<br>Repsol | Spain   | Cartagena               | Planned     | Organic residues and<br>waste streams      | HVO    | 250,000           |
| 5   | Eni raffineria di Livorno        | Italy   | Livorno                 | Planned     | Oilcrops, oils and fats                    | HVO    | 500,000           |
| 6   | Biocom energia                   | Spain   | Algemesì                | Operational | UCO, oleins, second-<br>use animal fats.   | FAME   | 120,000           |
| 7   | Greenswitch                      | Italy   | Ferrandina              | Operational | Oilcrops, UCO,<br>animal fats              | FAME   | 120,000           |
| 8   | Agroinvest                       | Greece  | Achladi                 | Operational | Oilcrops, UCO,<br>animal fats              | FAME   | 200,000           |

#### Identification of supply radius from biorefineries

In the considered value chain, it was supposed that castor oil is extracted from seeds directly at the farm, then stored and transported to the existing HVO or to conventional oil refineries currently operating. Transportation from farm to refinery is done by tanker truck with load capacity of 37,500 L. Sustainable distance from the plants for biomass supply was identified starting from the two scenarios assessed for perennial grasses case study. In particular, energy density of castor was compared to that of lignocellulosic crops (i.e., switchgrass and miscanthus) in order to establish two equivalent scenarios. A calculated indicator of 5.98 GJ per kilometer (Table 6) related to the transport of biomass served as the basis for comparison.

| Parameter                        | Lignocellulosic crops                             | U.M.                   | Source                 |  |  |  |  |
|----------------------------------|---------------------------------------------------|------------------------|------------------------|--|--|--|--|
| Values retreived from literature |                                                   |                        |                        |  |  |  |  |
| Supply radius                    | 70                                                | km                     | (Barsali et al., 2016) |  |  |  |  |
| Transportation volume            | 115                                               | m³                     | (Barsali et al., 2016) |  |  |  |  |
| Material type                    | chipped with forage harves<br>stored in square ba | (Barsali et al., 2016) |                        |  |  |  |  |
| Biomass bulk density             | 182                                               | kg/m3                  | (Lu et al., 2015)      |  |  |  |  |
| Calorific value                  | 20                                                | MJ/kg                  |                        |  |  |  |  |
| Values calculated                |                                                   |                        |                        |  |  |  |  |
| Biomass weight per transport     | 20,930                                            | kg                     |                        |  |  |  |  |
| Calorific value per transport    | 419                                               | GJ                     |                        |  |  |  |  |
| GJ per kilometer                 | 5.98                                              | GJ/km                  |                        |  |  |  |  |

Table 6. Summary table for calculation of an indicator based on distance and lignocellulosic crops energy density.



 Table 7. Summary table for calculation of supply radius for castor bean case study.

| Parameter                     | Castor bean                    | U.M.  | Source                |
|-------------------------------|--------------------------------|-------|-----------------------|
|                               | Values retreived from literatu | re    |                       |
| Calorific value               | 38.2                           | MJ/kg | (Ismail et al., 2014) |
| Transportation volumes        | 37,500                         | L     |                       |
| Castor oil density            | 0.95                           | kg/L  | (Patel et al., 2016)  |
|                               | Values calculated              |       |                       |
| Biomass weight per transport  | 35,630                         | kg    |                       |
| Calorific value per transport | 1361                           | GJ    |                       |
| GJ per kilometer              | 5.98                           | GJ/km |                       |
| Supply radius                 | 230                            | km    |                       |

Staring from the calculated indicator of 5.98 GJ/km, a first scenario of 230 km supply radius was determined for castor bean case study (Table 7).

The same methodology was then applied starting from the 150 km scenario of lignocellulosic crops case study, resulting in a second scenario of 500 km supply radius for castor bean case study.

#### 2.3 Value chain 2 – Productivity increases from improved agricultural practices

In this value chain, two distinct approaches were used for the case studies involved, described in the following sections.

#### Case study 3 – Brassica Carinata for renewable diesel

The investigation was conducted in European Mediterranean areas. The first step consisted in the identification of the most common sequential crop calendars adopted in these areas and into which brassica carinata could be incorporated. Next, the amount of arable land involved in the selected cultivation schemes has been determined. The yield of brassica on these lands has subsequently been modelled in order to determine the possible annual oil production, thus the potential of replicability of this case study.

#### Identification of sequential crop calendars

Multiple studies have demonstrated the ability of Brassicaceae to provide the soil with many advantages, such as suppression of weed populations, reduction of soil erosion and nutrient losses, increase of soil organic matter (Alcantara et al., 2009; Basili & Rossi, 2018). However, the successful establishment of Brassica Carinata in Mediterranean regions depends on its rotational fit into current cropping system. Brassica carinata can be grown either as a winter cover crop or as a summer cover crop (Seepaul et al., 2021). In this work, both varieties have been considered, representing two different scenarios of the assessment. The primary crops considered for developing the crop rotation calendars are winter cereals, cotton, and corn. Further information about primary crop type, land use and corresponding scenario is listed in Table 8.



Table 8. List of primary crops adopted in the study and corresponding land use and scenario.

| Crop species | Crop type              | Land use                  | Scenario             |
|--------------|------------------------|---------------------------|----------------------|
| Common wheat | Winter cereal          | Non irrigated arable land | Brassica summer crop |
| Durum wheat  | Winter cereal          | Non irrigated arable land | Brassica summer crop |
| Barley       | Winter cereal          | Non irrigated arable land | Brassica summer crop |
| Rye          | Winter cereal          | Non irrigated arable land | Brassica summer crop |
| Oats         | Winter cereal          | Non irrigated arable land | Brassica summer crop |
| Cotton       | Industrial spring crop | Irrigated arable land     | Brassica winter crop |
| Corn         | Spring cereal          | Irrigated arable land     | Brassica winter crop |

The crop calendars regularly adopted (Figure 12) were identified through multiple consultations with partners from other Work Packages of the BIKE project, in particular: partners of Imperial Collage and Wageningen University from WP2, partners of FAO from WP4, partners of CRES from WP6.



Figure 12. Sequential cropping calendars for winter cereals (a) and corn/cotton (b).

In Mediterranean regions, the most established rotation scheme for winter cereals involves sowing in the months of November/December and harvesting in the months of June/July. Between two cycles of sowing and harvesting, usually a fallow period or a leguminous cultivation – for N availability improvement – is expected (Figure 12a). Winter cereals cultivation in Southern Europe is typically non irrigated. On the contrary, the spring cultivation of corn and cotton, which require a high demand of water, is typically conducted with an irrigated rotation (Figure 12b). Sowing of corn and cotton usually takes place in the months of May/June and harvesting in the months of October/November. The growing cycle of these crops usually alternate with a long fallow period (July – May) and cultivation of fodder or winter cereals (Dec – June).

Figure 13 and Figure 14 display the solutions identified for incorporating brassica carinata in the rotation schemes described above. It is important to underline that the arrangement of the cropping calendars is very complex and dynamic throughout the year. As a result, the sequential cropping rotations developed can be interpreted as a general scheme whose boundaries can be adjusted according to local environmental and economic conditions.



|                                                                             | SEQUENTIAL CROPPING                                             |                                     |        |        |           |            |                      |                             |                       |       |     |     |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------|--------|--------|-----------|------------|----------------------|-----------------------------|-----------------------|-------|-----|-----|
| CROP CALENDARS                                                              | Agricultura Year 1 Agricultur                                   |                                     |        |        |           |            | ural Year 2          |                             |                       |       |     |     |
|                                                                             | dec jen feb mar apr may june                                    | july aug sep oct                    | nov de | ec jen | feb       | mar a      | apr may              | june j                      | uly aug               | sep   | oct | nov |
|                                                                             |                                                                 |                                     |        |        |           |            |                      |                             |                       |       |     |     |
|                                                                             | winter cereal                                                   |                                     |        |        |           |            |                      |                             |                       |       |     |     |
|                                                                             |                                                                 |                                     | fall   | low    |           |            |                      |                             |                       |       |     |     |
|                                                                             |                                                                 |                                     |        |        |           |            |                      |                             | corn/                 | cotto | n   |     |
|                                                                             |                                                                 |                                     |        |        |           |            |                      |                             |                       |       |     |     |
|                                                                             |                                                                 |                                     |        |        |           |            |                      |                             |                       |       |     |     |
| New winter cereals                                                          |                                                                 |                                     |        |        |           |            |                      |                             |                       |       |     |     |
| New winter cereals<br>and corn/cotton                                       | Agricultural Y                                                  | ear 3                               |        |        |           | A          | Agricultu            | ral Yea                     | 4                     |       |     |     |
| New winter cereals<br>and corn/cotton<br>rotation scheme                    | Agricultural Y<br>dec jen feb mar apr may june                  | ear 3<br>july aug sep oct           | nov de | ec jen | feb       | A<br>mar a | Agricultu<br>apr may | <b>ral Yea</b> ı<br>june jı | • <b>4</b><br>uly aug | sep   | oct | nov |
| New winter cereals<br>and corn/cotton<br>rotation scheme<br>(with Brassica) | Agricultural Y<br>dec jen feb mar apr may june                  | ear 3<br>july aug sep oct           | nov de | ec jen | feb       | A<br>mar a | Agricultu<br>apr may | <b>ral Yea</b> ı<br>june jı | <b>4</b><br>uly aug   | sep   | oct | nov |
| New winter cereals<br>and corn/cotton<br>rotation scheme<br>(with Brassica) | Agricultural Y<br>dec jen feb mar apr may june<br>winter cereal | ear 3<br>july aug sep oct           | nov de | ec jen | feb       | A<br>mar a | Agricultu<br>apr may | <b>ral Yea</b> i<br>june ji | <b>4</b><br>Jyaug     | sep   | oct | nov |
| New winter cereals<br>and corn/cotton<br>rotation scheme<br>(with Brassica) | Agricultural Y<br>dec jen feb mar apr may june<br>winter cereal | ear 3<br>july aug sep oct<br>fallow | nov de | ec jen | feb       | A<br>mar a | Agricultu<br>apr may | ral Yeai<br>june ji         | <b>4</b><br>uly aug   | sep   | oct | nov |
| New winter cereals<br>and corn/cotton<br>rotation scheme<br>(with Brassica) | Agricultural Y<br>dec jen feb mar apr may june<br>winter cereal | ear 3<br>july aug sep oct<br>fallow | nov de | ec jen | feb       | mar a      | Agricultu<br>apr may | ral Year                    | <b>4</b><br>uly aug   | sep   | oct | nov |
| New winter cereals<br>and corn/cotton<br>rotation scheme<br>(with Brassica) | Agricultural Y<br>dec jen feb mar apr may june<br>winter cereal | ear 3<br>july aug sep oct<br>fallow | nov de | ec jen | feb<br>br | A<br>mar a | Agricultu<br>apr may | ral Year                    | <b>4</b><br>uly aug   | sep   | oct | nov |

*Figure 13. New crop calendar for corn/cotton cultivation (Brassica winter cover crop)* 



Figure 14. New crop calendar for winter cereals (Brassica summer cover crop).

The developed rotation calendars consist of four agricultural years; this ensures a fallow period once every four years that allows for recovery and storage of soil organic matter as well as replenishment of nutrients in the soil.

In accordance with previous studies and consultations with BIKE partners, a growing cycle of 6 – 7 months has been considered for brassica winter variety (Dec – June). Consequently, the scheme proposed for brassica carinata as a winter cover crop (Figure 13), involves replacing of a part of the fallow period (Dec – May) and a delay of the sowing of corn or cotton, which is considered as feasible due to the short-cycle varieties available on the market. When defining the calendar for brassica as a summer cover crop, a growing cycle of five months has been considered on the assumption that the crop would perform a shorter cycle during the summer months. The scheme proposed involves replacing of the fallow period (Jul – Nov) once every four years (Figure 14).

At this point, it is important to highlight that the extended growing cycle of this crop – particularly of the winter variety – may result in an obstacle for farmers to include it into their rotation plans.



Та

The development of new genotypes with shorter cycle may represent a solution to facilitate incorporation of brassica in European agricultural system.

As already mentioned, the selected rotational calendars of four agricultural years involve one fallow period every four years and one harvest of brassica every four years. To account for this assumption when calculating potential oil production, we considered 25% of identified arable lands as available every year for brassica cultivation.

#### Hectares of land available for sequential cropping

The Mediterranean areas included in the study are represented by Spain, Italy, Southern France, and Greece. The identification of the total hectares of arable land dedicated to winter cereals and corn/cotton cultivation was conducted at a NUTS 3 level, which is the administrative level that identifies sub-regions (Figure 15). Information have been collected from different, country-specific databases, listed in Table 9. Table 10 presents an example of collected data for the Greek sub-regions. The same approach has been adopted for the other target countries.



Figure 15. Administrative subdivision at NUTS 3 level of Spain, France, Italy, and Greece.

| Country | Database                                                                 | Year |
|---------|--------------------------------------------------------------------------|------|
| Spain   | Anuario dè Estadistica (Ministerio de Agricoltura, Pesca y Alimentaciòn) | 2020 |
| Italy   | Coltivazioni in Italia (ISTAT)                                           | 2021 |
| Greece  | Annual Agricultural Statistical survey (ELSTAT)                          | 2019 |
| France  | Statistique agricole annuelle                                            | 2021 |

| ble 9. List of online databases that store information about hectares of arable land dedicated to crop cult | ivatior |
|-------------------------------------------------------------------------------------------------------------|---------|
|-------------------------------------------------------------------------------------------------------------|---------|



#### Deliverable 3.3 - BIKE project

Table 10. Example of collected data: number of hectares in Greece used for corn, cotton, and winter cereals cultivation (2019).

|                                                       |           | SPRING CROPS |        | WINTER CEREALS       |                     |              |            |          |
|-------------------------------------------------------|-----------|--------------|--------|----------------------|---------------------|--------------|------------|----------|
| Regional (NUTS 2) and sub-<br>regional (NUTS 3) units | Corn [ha] | Cotto        | n [ha] | Common wheat<br>[ha] | Durum wheat<br>[ha] | Barley [ha]  | Oats [ha]  | Rye [ha] |
| Factors Macadania                                     |           | mgateu       |        |                      |                     |              |            |          |
| Eastern Macedonia                                     |           |              |        |                      |                     |              |            |          |
| Rodopi                                                | 1156      | 26701        | 8826   | 3299                 | 5582                | 2734         | 118        | 68       |
| Drama                                                 | 7694      | 4594         | 7      | 4721                 | 5051                | 2802         | 805        | 113      |
| Evros                                                 | 1148      | 17110        | 17656  | 4882                 | 17462               | 2023         | 38         | 229      |
| Thasos, Kavala                                        | 9357      | 153          | 4      | 1067                 | 298                 | 626          | 20         | 17       |
| Xanthi                                                | 5644      | 4060         | 146    | 7225                 | 581                 | 1300         | 141        | 134      |
| Central Macedonia                                     | 4422      | 12100        | 1720   | 10705                | 20767               | 10030        | 002        | 202      |
| Inessaioniki                                          | 4122      | 12496        | 1/20   | 10795                | 20767               | 10039        | 892        | 283      |
| imatnia<br>Kilkia                                     | 1657      | 15334        | 2256   | 1279                 | 1490                | 487          | 22         | 1        |
| KIIKIS                                                | 1199      | 5780         | 2256   | 12796                | 22836               | 4635         | 503        | 470      |
| Pella                                                 | 5554      | 13263        | 0      | 3291                 | 4814                | 2438         | 153        | 265      |
| Pieria                                                | 1201      | 3841         | 14     | 5326                 | 8901                | 3276         | 828        | 33       |
| Serres                                                | 15614     | 28933        | 428    | 4931                 | 21808               | 0845         | 196        | 355      |
|                                                       | 125       | 550          | 55     | 1220                 | 0                   | 5915         | 1202       | 42       |
| Kozani Gravena                                        | 2710      | 16           | 0      | 17/06                | 21651               | 12047        | 002        | 1556     |
| Kastoria                                              | 607       | 10           | 12     | 2711                 | 21031               | 1204/<br>607 | 905<br>78  | 771      |
| Florina                                               | 3700      | 10           | 10     | 2034                 | 1770                | 2740         | 20         | 7/1      |
| Region of Enirus                                      | 3705      | 50           | U      | 3034                 | 1//0                | 2/40         | 210        | 2042     |
| lopping                                               | 1105      | 0            | 0      | 260                  | 12                  | 196          | 02         | 272      |
| Theorotia                                             | 369       | 0            | 0      | 200                  | 13                  | 120          | 240        | 1        |
|                                                       | 11/15     | 96           | 1      | 03                   | 52                  | 22           | 809        | 2        |
| Region of Thessally                                   | 1145      | 50           | 1      | 55                   | 55                  | 55           | 805        | 2        |
| l arissa                                              | 9873      | 31814        | 214    | 5669                 | 54805               | 25243        | 3578       | 360      |
| Karditsa Trikala                                      | 12647     | 53322        | 0      | 5619                 | 15786               | 3419         | 1904       | 63       |
| Magnesia, Sporades Islandes                           | 1065      | 4988         | 26     | 798                  | 8640                | 8327         | 1064       | 1        |
| Central Greece                                        | 1005      | 4500         | 20     | 750                  | 0040                | 0327         | 1004       | -        |
| Viotia                                                | 2117      | 17080        | 654    | 99                   | 17557               | 6099         | 2241       | 8        |
| Evia                                                  | 738       | 585          | 0      | 1040                 | 2711                | 2806         | 1841       | 3        |
| Evritania                                             | 17        | 0            | 0      | 1                    | 6                   | 2            | 2          | 0        |
| Fokida, Pthiotida                                     | 2588      | 14523        | 270    | 1466                 | 17801               | 5446         | 2202       | 39       |
| Ionian Islands                                        |           |              |        |                      |                     |              |            |          |
| Corfu                                                 | 6         | 0            | 0      | 0                    | 0                   | 0            | 2          | 0        |
| Zakynthos                                             | 0         | 0            | 0      | 32                   | 14                  | 78           | 1795       | 4        |
| Kefallonia. Ithaka                                    | 0         | 0            | 0      | 47                   | 135                 | 56           | 158        | 0        |
| Lefkada                                               | 0         | 0            | 0      | 4                    | 0                   | 3            | 22         | 3        |
| Western Greece                                        | -         | -            |        |                      |                     | _            |            | _        |
| Achaia                                                | 690       | 0            | 0      | 354                  | 2326                | 1342         | 3426       | 1        |
| Etolia and Akarnania                                  | 10225     | 2704         | 0      | 455                  | 1164                | 921          | 6914       | 0        |
| Ilia                                                  | 5011      | 768          | 0      | 327                  | 37                  | 938          | 8273       | 1        |
| Peloponnese                                           | 0         |              |        |                      |                     |              |            |          |
| Korinthia                                             | 93        | 0            | 0      | 661                  | 1398                | 413          | 1181       | 3        |
| Arkadia, Argolida                                     | 220       | 0            | 0      | 1165                 | 842                 | 1782         | 2414       | 4        |
| Lakonia, Mesinia                                      | 163       | 0            | 0      | 129                  | 58                  | 356          | 987        | 13       |
| Region of Attica                                      |           |              |        |                      |                     |              |            |          |
| Athens Central Section                                | 0         | 0            | 0      | 0                    | 0                   | 0            | 0          | 0        |
| Athens North Section                                  | 0         | 0            | 0      | 0                    | 0                   | 0            | 0          | 0        |
| Athens West Section                                   | 0         | 0            | 0      | 0                    | 0                   | 0            | 0          | 0        |
| Athens South Section                                  | 0         | 0            | 0      | 0                    | 0                   | 0            | 0          | 0        |
| Athens East Section                                   | 12        | 0            | 0      | 103                  | 716                 | 355          | 250        | 0        |
| West Attica                                           | 1         | 17           | 846    | 11                   | 1554                | 299          | 243        | 0        |
| Pireaus, Attica Islands                               | 0         | 0            | 0      | 3                    | 11                  | 0            | 0          | 0        |
| Northern Aegean                                       |           |              |        |                      |                     |              |            |          |
| Samos, Ikaria                                         | 0         | 0            | 0      | 45                   | 33                  | 1            | 39         | 0        |
| Chios                                                 | 1         | 0            | 0      | 1                    | 96                  | 65           | 18         | 0        |
| Lesbos, Limnos                                        | 12        | 0            | 0      | 488                  | 453                 | 6205         | 515        | 19       |
| Southern Aegean                                       |           |              |        |                      |                     |              |            |          |
| Syros, Andros, Thira, Kea,                            |           |              |        |                      |                     |              |            |          |
| Milos, Mykonos, Naxos,<br>Paros, Tinos                | 0         | 0            | 0      | 128                  | 2                   | 2117         | 41         | 3        |
| Kalimnos, Karpathos, Kos,<br>Rodhes                   | 0         | 0            | 0      | 409                  | 1642                | 560          | 613        | 9        |
| Rogion of Croto                                       |           |              |        |                      |                     |              |            |          |
| Horaklion                                             | 0         | 0            | 0      | 204                  | 124                 | 2140         | 217        | 270      |
| Lasithi                                               | 0         | 0            | 0      | 204                  | 124                 | 2149         | 31/<br>212 | 10       |
| Rethymno                                              | 3         | 0            | 0      | 5                    | 1.3<br>R            | 17           | 213        | 13       |
| Chania                                                | 17        | 0            | 0      | 5                    | 1                   |              | 114        | 0        |



#### Yield modelling and climate suitability

The yield of Brassica Carinata was modelled following the same methodology used for perennial grasses and explained in Chapter 2.1. Brassica Carinata was assimilated to rapeseed (*Brassica Napus*), which, unlike Carinata, was accessible in the GAEZ dataset. The two crops present similar responses to growing conditions of Mediterranean climates, as emerged from literature (Del Gatto et al., 2015) and from results of BIKE activities and open labs. Furthermore, two supplementary layers showing suitability of the Brassica Carinata winter variety (Figure 16) and summer variety (Figure 17) in Europe were overlayed during data elaboration.



Figure 16. Climate suitability of Winter Brassica Carinata in Europe.



Figure 17. Climate suitability of Summer Brassica Carinata in Europe.



The two layers were retrieved from the MAGIC project<sup>8</sup>, which carefully mapped the climatic suitability of the various crops in order to understand which crops can be grown most successfully in the different AEZs and which natural constraints are most frequently present (Elbersen et al., 2022).

The climate suitability is mapped according to the following factors:

- 1) Minimum length of growth season (days), linked to base temperature.
- 2) Minimum length of growing degree days (GDD), linked to base temperature.
- 3) Level to which the crop (above and below ground biomass) can survive different levels of killing frost (KF), assuming this frost occurring for at least 5 days in a row.
- 4) Minimum level of precipitation the crop needs during the growing season.

In the present work, only those areas defined as suitable with no limiting factors or suitable with only one limiting factor have been considered for the assessment. Consequently, only a few locations in eastern Greece, southeastern Spain, and southern Italy (shown in light green on the map) can be regarded ideal for the winter variety (Figure 16). On the contrary, the summer variety has a significantly wider range of suitability (shown in green and blue on the map) and is applicable for all Mediterranean areas (Figure 17).

#### Identification of biorefineries and supply radius

Replicability potential of brassica carinata case study was determined using the same biorefineries as those used for the Castor bean case study, with the addition of one HVO operational facility in Chateauneuf-les-Martigues, Southern France (Figure 18). The latter is owned by TOTAL and has an annual capacity of 500,000 tons of renewable diesel, with input feedstocks that include oilcrops, UCO and animal fats. As regards biomass supply, distances of 230 km and 500 km from biorefineries have been considered.



Figure 18. Biorefineries considered for Brassica Carinata case study.

<sup>&</sup>lt;sup>8</sup> <u>https://magic-h2020.eu/</u>, Horizon 2020 project, Grant agreement n° 727698.



#### Case study 4 – Biogas done right model (BDR) for biomethane-to-liquid fuels

The BDR model case study involved the evaluation of biomethane potential production from cover cropping by 2030 in all European countries, as well as evaluation of EU countries level of development in terms of the number of biomethane/biogas plants and development of the natural gas network. All these information was retreived from literature and existing databases. The replicability potential of the case study was determined by identifying the most promising countries in terms of number of plants and development of the gas grid, and calculating:

- The potential biomethane production that could be achieved through an upgrading of 90% of the biogas plants by 2030.
- The potential liquid production that could be achieved through installation of a centralized Fisher-Tropsch or MeOH plant.

Results for biomethane potential production from upgrading of biogas plants were then compared to estimated biomethane potential production from cover cropping.

#### Evaluation of biomethane potential production from cover cropping (CC)

A Gas for Climate Report (Schellenbach, 2022) provided the information on the biomethane potential that sequential cropping strategies could produce by 2030. The report identifies the short- and long-term potential of biomethane production in each EU Member State (plus Norway, Switzerland, and the UK), through anaerobic digestion or thermal gasification.

The four biogeographical regions of the Atlantic, Continental, Mediterranean, and Other (which includes Boreal and Mountain) were used in the methodology of the study to first categorize the European countries. Next, data on hectares of arable land area of each Member State was gathered from Eurostat (three-year average from 2018 to 2020). Based on forecasts released by the European Commission, the arable land areas in 2030 were calculated. According to a conservative scenario, 20% of all arable land in each region was considered as suitable for sequential cropping. Different types of sequential crops were defined for each biogeographical region, along with the appropriate shares of each crop. For the Continental region, for instance, green rye (67%) and ryegrass (33%) were selected. The average yield for sequential cropping for each region was then estimated. Ultimately, the theoretical sequential cropping productivity was calculated using the average regional yields and the available land area (i.e., 20% of arable land) for each country. Another important assumption that is defined is how often a sequential crop could be harvested in cultivated land (e.g., annually or only every two to three years to account for years when the land is still fallow or to allow for the possibility that occasionally the second crop would not produce a yield that was worthwhile to harvest). Therefore, it was assumed that by 2030, 10% of the calculated theoretical potential may be realized. A higher share of 65% was applied to Italy, while a higher share of 20% was applied to France and Germany, in order to account for the significant results already achieved to date and determined focus to continue to develop this concept. The biomethane production ultimately was computed using the assumptions of a 0.57 m<sup>3</sup> biogas yield per kg of dry feedstock and a 57% methane content in the biogas. Results are shown in Figure 19 and summarized in Table 11.





Figure 19. Anaerobic digestion potential in 2030 per feedstock per country. Source: A Gas For Climate report, 2022.

| Table 11. Potential production from sequential cropping by 2030. Source: A Gas For Climate Report, 2022. |          |                                 |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------|---------------------------------|--|--|--|--|
| Nr.                                                                                                      | Country  | Biomethane potential [bcm/year] |  |  |  |  |
| 1                                                                                                        | Italy    | 3.2                             |  |  |  |  |
| 2                                                                                                        | France   | 1.65                            |  |  |  |  |
| 3                                                                                                        | Germany  | 1                               |  |  |  |  |
| 4                                                                                                        | Spain    | 0.85                            |  |  |  |  |
| 5                                                                                                        | Poland   | 0.45                            |  |  |  |  |
| 6                                                                                                        | Romania  | 0.25                            |  |  |  |  |
| 7                                                                                                        | UK       | 0.25                            |  |  |  |  |
| 8                                                                                                        | Hungrary | 0.15                            |  |  |  |  |
| 9                                                                                                        | Greece   | 0.15                            |  |  |  |  |

| a la la | 11          | Detential |            | fuene economical | ana mata a la | . 2020 Courses    | A Care Fax Climente | Dement 2022   |
|---------|-------------|-----------|------------|------------------|---------------|-------------------|---------------------|---------------|
| uble    | <i>11</i> . | rotential | production | rom sequential   | cropping b    | y 2030. Source: A | a Gus ror Climate   | Report, 2022. |

The top 5 countries identified for biomethane potential from sequential cropping include Italy, France, Germany, Spain, and Poland, with values ranging from 0.45 billion cubic meters per year (Poland) to 3.2 billion cubic meters per year (Italy).



#### Determination of the natural gas grid development in selected countries

The determination of natural gas grid level of development in European countries relies on the System Development Map realised from the European Network of Transmission System Operators for Gas (ENTSOG) in 2023 <sup>9</sup>.

The System Development map (Figure 20), which was created in collaboration with GIE (Gas Infrastructure Europe), offers a clear and regular overview of the current state of gas infrastructure, projections for its growth, and the actual supply and demand situation at the national and European levels from the perspective of a particular year. It aims at establishing an accessible reference for such data and to map trends and their evolution through time.



Figure 20. System Development Map. Source: ENTSOG, 2023.

Values of mean storage capacity and total natural gas demand of European countries for the year 2020 were obtained from the map and are shown in Figure 21 and Figure 22.

<sup>&</sup>lt;sup>9</sup> <u>https://www.entsog.eu/maps</u>

## 🌀 ВІКЕ





Figure 22. Natural gas mean storage capacity (2020) of the 8 top European countries.

The top four countries resulting through examination of the System Development map are: Germany, Italy, France, and UK.

#### Determination of the number and capacity of biomethane and biogas plants

The identification of existing biomethane plants relies on a map released from European Biogas Association (EBA) in 2021 (Figure 23). This comprehensive map lists all known biomethane installations running in Europe and has been produced with the information gathered from national biogas associations, energy agencies and companies<sup>10</sup>. The map provides specific details about each biomethane plant, including location, production capacity, start of operation and status of grid connection.

<sup>&</sup>lt;sup>10</sup> <u>https://www.europeanbiogas.eu/biomethane-map-2021/</u>

## 🌀 BIKE



Figure 23. Biomethane plants in Europe. Source: EBA (2021)

The most promising countries identified in terms of number of biomethane plants and production capacity are again France, Germany, Italy, and UK. Collected data are listed in Table 12.

| Country | Number of biomethane plants | Present production capacity (Nm <sup>3</sup> /h) | Connection to the grid |
|---------|-----------------------------|--------------------------------------------------|------------------------|
| France  | 337                         | 66,425                                           | 100%                   |
| Germany | 198                         | 111,616                                          | 100%                   |
| UK      | 98                          | 79,350                                           | 100%                   |
| Italy   | 27                          | 26,455                                           | 85%                    |

Table 12. Number of biomethane plants and total production capacity of the top four European countries.

As regards biogas plants, their number and respective production capacity in the various European countries could not be determined from a single available source. Then, data for France, Germany, Italy, and UK – the top countries in terms of biomethane potential from CC, biomethane current production capacity, as well as the development of the natural gas grid – was gathered using country-specific databases that were accessible online for consultation and download (Table 13).



Table 13. List of online databases used to collect data about number and production capacity of biogas plants in the target countries.

| Country | Database                                           | Year | Type of file |
|---------|----------------------------------------------------|------|--------------|
| Italy   | Gestore dei Servizi Energetici (GSE)               | 2017 | xls          |
| France  | Association technique energie environnement (ATEE) | 2020 | shp          |
| Germany | German Biogas Association                          | 2022 | pdf          |
| UK      | REA (Renewable Energy Association)                 | 2019 | shp          |

As appears from the above table, data collected for the selected countries present different years of reference as well as different formats for download and elaboration. In particular, files downloaded for France and UK could be opened and elaborated directly in the GIS environment and contained information about plants' locations, production capacities, and types of feedstocks and output (Figure 24). The file downloaded for Italy contained a list of biogas plants and corresponding production capacity and locations, but no information about utilized feedstocks and plant output was available (Table 14). However, the list could be used to generate a new layer to open in GIS. For Germany, only a pdf file containing overall number and production capacity for the whole country was available, and no further elaboration could then be produced (Figure 25). Overall results are summarized in Table 15.



*Figure 24. Location of biogas plants in France (a) and UK (b) and corresponding output.*


Table 14. Excerpt from the excel file downloaded for Italy and containing information about location and capacity of the biogas plants.

| Region  | City     | Municipality         | P.(kWe) |
|---------|----------|----------------------|---------|
| Abruzzo | Chieti   | Chieti               | 625     |
| Abruzzo | Chieti   | Cupello              | 300     |
| Abruzzo | Chieti   | Fara Filiorum Petri  | 100     |
| Abruzzo | Chieti   | Lanciano             | 999     |
| Abruzzo | Chieti   | Lanciano             | 1672    |
| Abruzzo | L'Aquila | Avezzano             | 999     |
| Abruzzo | L'Aquila | Celano               | 1027    |
| Abruzzo | L'Aquila | Collarmele           | 990     |
| Abruzzo | L'Aquila | Ortucchio            | 998     |
| Abruzzo | L'Aquila | Raiano               | 100     |
| Abruzzo | L'Aquila | Tagliacozzo          | 99      |
| Abruzzo | L'Aquila | Trasacco             | 500     |
| Abruzzo | Pescara  | Citta' Sant'Angelo   | 999     |
| Abruzzo | Pescara  | Spoltore             | 2130    |
| Abruzzo | Teramo   | Atri                 | 100     |
| Abruzzo | Teramo   | Castellalto          | 45      |
| Abruzzo | Teramo   | Mosciano Sant'Angelo | 625     |
| Abruzzo | Teramo   | Nereto               | 100     |
| Abruzzo | Teramo   | Notaresco            | 996     |
| Abruzzo | Teramo   | Roseto Degli Abruzzi | 999     |
| Abruzzo | Teramo   | Teramo               | 49      |



Figure 25. Development of the number of biogas plants and the total installed electric capacity in megawatt [MW] in Germany (as of 10/2022).

| Country | Number of plants | Installed capacity (MWe) |
|---------|------------------|--------------------------|
| Italy   | 2006             | 1339                     |
| Germany | 9770             | 5926                     |
| France  | 797              | 182                      |
| UK      | 404              | 343                      |

Table 15. Total number of biogas plants and installed capacity of the four selected target countries.

In this work, we calculated potential biomethane production in Italy, Germany, France and UK, assuming an upgrading of 90% of the biogas plants by 2030, a mean efficiency of a gas engine of 35%, a methane heating value of 10 kWh/Nm<sup>3</sup>, and a methane content in the biogas of 57%.



#### GTL conversion technologies and factors

The biomethane-to-liquid fuels value chain consists in a decentralized pattern for biomethane production and a centralized pattern for fuel production. As regards liquid fuels production, conversion technologies of biomethane to Fisher -Tropsch (F.T.) diesel and MeOH have been considered. F.T. synthesis is a catalytic process for converting syngas into a petroleum-like product termed as FT crude, readily upgradable into a wide range of transportation grade liquid hydrocarbons. The polymerization of hydrocarbons in a FT reactor is theoretically governed by the Anderson-Shuls-Flory (ASF) distribution, which relates the weight fraction ( $W_n$ ) of hydrocarbons containing n carbon atoms and the chain growth probability factor (Figure 26).



Figure 26. ASF distribution,  $Wn/n = (1-\alpha)2 \alpha n-1$ , FT selectivities (a) and high  $\alpha$ -values favour long chain products (b)

Commercial-scale F.T. plants include the Pearl GTL from Shell and Qatar Petroleum in Qatar (140,000 bpd capacity), the Mossel Bay GTL from PetroSA in South Africa (36,000 bpd capacity), and the Bintulu GTL from Shell in Malaysia (14,700 bpd capacity), all of which located outside of Europe<sup>11</sup>. These examples represent massive facilities that would not fit in the European BDR for biomethane-to-liquid fuels production reality. However, by taking advantage of new technologies, GTL plants could be scaled down and provide a cost-effective way to make use of smaller biogas and biomethane resources in Europe (Brancaccio, 2021). Another possibility is to consider biomethane as a renewable source for methanol production. Examples of commercial-scale plants include the Titan and Atlas plants from Methanex, with MeOH production capacities of 2500 and 5000 tons/d, respectively<sup>12</sup>.

In this work, we evaluated F.T. liquids and MeOH potential production considering conversion factors of  $0.817 \text{ m}^3/\text{tCH}_4$  and  $1.78 \text{ tons/tCH}_4$ , respectively. The latter were established based on the conversion factors of the existing commercial scale plant.

<sup>&</sup>lt;sup>11</sup> <u>https://www.etipbioenergy.eu/fact-sheets</u>

<sup>&</sup>lt;sup>12</sup> <u>https://aenert.com/</u>



## 3 Results

## 3.1 Perennial grasses for bioethanol

The following table provides a summary of the outputs obtained from the assessment of perennial grasses case study.

| Output | Target crop | Target area | Target<br>biorefineries | Scenario /supply distance |
|--------|-------------|-------------|-------------------------|---------------------------|
| 1      | Switchgrass | Europe      | 2G bioethanol           | Scenario 1 - 70 km        |
| 2      | Miscanthus  | Europe      | 2G bioethanol           | Scenario 1 - 70 km        |
| 3      | Switchgrass | Europe      | 1G bioethanol           | Scenario 1 - 70 km        |
| 4      | Miscanthus  | Europe      | 1G bioethanol           | Scenario 1 - 70 km        |
| 5      | Switchgrass | Europe      | 2G bioethanol           | Scenario 2 - 150 km       |
| 6      | Miscanthus  | Europe      | 2G bioethanol           | Scenario 2 - 150 km       |
| 7      | Switchgrass | Europe      | 1G bioethanol           | Scenario 2 - 150 km       |
| 8      | Miscanthus  | Europe      | 1G bioethanol           | Scenario 2 - 150 km       |

Table 16. Summary of the outputs obtained from data elaboration of perennial grasses case study.

The results of switchgrass and miscanthus yield modelling, performed using data from the GAEZ data portal, are displayed in the maps in Figure 27 and Figure 28. Switchgrass attainable yield ranges from 0 to 28 dry tons per hectare, while miscanthus attainable yield ranges from 0 to 23 dry tons per hectare. It is important to note that experimental trials often provide higher yields for miscanthus than for switchgrass; yet, we decided to proceed forward with the assessment taking into consideration the output from GAEZ. This decision is supported by the fact that the two crops will be discussed together, as a single case study, and the goal of offering an estimation of potential biomass production in all of Europe is still achieved. However, additional research is advised in order to calibrate the model to experimental findings and produce more accurate outcomes.



Figure 27. Switchgrass attainable yield in Europe.



Figure 28. Miscanthus attainable yield in Europe.



The two layers of switchgrass and miscanthus attainable yield were overlayed to the map of underutilized lands retrieved from the BIOPLAT platform and the map of biorefineries created for this project. Considering supply distances of 70 km and 150 km from biorefineries, potential biomass production was calculated. A minimum annual dry biomass production of 100,000 tons was established as a threshold to identify the most promising case studies. Results are shown in the following sections.

## 3.1.1 Scenario 1 – 70 km distance for biomass supply

Figure 29 and Figure 30 display the outputs that were produced considering second-generation bioethanol plants (both operational and planned/under construction), areas of 70km radius for biomass supply, and switchgrass and miscanthus attainable yields on underutilized lands. A total annual production of 778,540 and 328,784 dry tons is estimated for switchgrass and miscanthus, respectively. Only a single case study located in Romania met or exceeded the threshold value of 100,000 tons, represented by Clariant plant in Podari (Table 17).



Figure 29. Switchgrass attainable yield in European underutilized lands, second-generation bioethanol plants and 70 km supply radius



Figure 30. Miscanthus attainable yield in European underutilized lands, second-generation bioethanol plants and 70 km supply radius.

| Name of the plant            | Status      | Country  | Underutilized<br>lands [hectares] | Switchgrass<br>[t DW/year] | Miscanthus<br>[t DW/year] |
|------------------------------|-------------|----------|-----------------------------------|----------------------------|---------------------------|
| Crescentino Bioethanol Plant | Operational | Italy    | 257                               | 5789                       | 3191                      |
| AustroCel Hallein            | Operational | Austria  | 49                                | 123                        | 25                        |
| Futurol ARD                  | Operational | France   | 29                                | 322                        | 114                       |
| Futurol IFP                  | Operational | France   | 66                                | 926                        | 343                       |
| Clariant AG                  | Operational | Germany  | 0                                 | 0                          | 0                         |
| Clariant Products RO         | Operational | Romania  | 38,615                            | 498,623                    | 200,287                   |
| Inibicon                     | Operational | Denmark  | 0                                 | 0                          | 0                         |
| Gothenburg Ethanol Plant     | Operational | Sweden   | 573                               | 1,831                      | 0                         |
| Borregaard Industries AS     | Operational | Norway   | 44                                | 144                        | 0                         |
| Ornskoldsvik SEKAB           | Operational | Sweden   | 0                                 | 0                          | 0                         |
| St 1 Bionolix                | Operational | Finland  | 1249                              | 1,929                      | 0                         |
| Chemopolis Oy                | Operational | Finland  | 0                                 | 0                          | 0                         |
| Etanolix Vantaa              | Operational | Finland  | 10                                | 10                         | 0                         |
| Sainc Energy Limited         | Planned     | Spain    | 8,910                             | 46,066                     | 37,147                    |
| RYAM                         | Planned     | France   | 143                               | 1,639                      | 731                       |
| Bioskoh                      | Planned     | Slovakia | 4,451                             | 50,789                     | 21,192                    |
| Envirals Leopoldov           | Planned     | Slovakia | 6,959                             | 76,819                     | 29,099                    |
| Jedlicze Site                | Planned     | Poland   | 5,594                             | 76,312                     | 27,197                    |
| Clariant Technology          | Planned     | Bulgaria | 350                               | 4,248                      | 614                       |
| INA Ethanol                  | Planned     | Croatia  | 685                               | 12,898                     | 88,44                     |
| RE Energy                    | Planned     | Denmark  | 0                                 | 0                          | 0                         |
| Cellulonix Pietrarsaari      | Planned     | Finland  | 144                               | 72                         | 0                         |
| St1 Cellulonix               | Planned     | Finland  | 0                                 | 0                          | 0                         |
| Nordfuel biorefinery         | Planned     | Finland  | 0                                 | 0                          | 0                         |
| Cellulonix Follum            | Planned     | Norway   | 0                                 | 0                          | 0                         |
|                              |             |          | tot                               | 778,540                    | 328,784                   |

Table 17. Switchgrass and Miscanthus potential production within 70 km distance from second-generation ethanol plants.



Figure 31 shows the results obtained while taking into account first-generation bioethanol plants with possibility of upgrade to second-generation, areas with a radius of 70 km for biomass supply, and the attainable yields of switchgrass on underutilized lands. A total annual production of 1,296,822 and 355,856 dry tons is estimated for switchgrass and miscanthus, respectively. Five case studies met or exceeded the threshold value of 100,000 tons, of which two located in Spain, one in Hungary and two in Bulgaria (Table 18).



Figure 31. Switchgrass attainable yield in European underutilized lands, first-generation bioethanol plants with possibility of upgrade and 70 km supply radius.



## Deliverable 3.3 - BIKE project

Table 18. Switchgrass and Miscanthus potential production within 70 km distance from first-generation ethanol plants.

| Name of the plant                                   | Country        | Underutilized<br>lands [hectares] | Switchgrass<br>[t DW/year] | Miscanthus<br>[t DW/year] |
|-----------------------------------------------------|----------------|-----------------------------------|----------------------------|---------------------------|
| IMA, Bertolino                                      | Italy          | 910                               | 0                          | 12,782                    |
| Caviro Distillerie SRL                              | Italy          | 112                               | 410                        | 190                       |
| Silicompa                                           | Italy          | 454                               | 3,570                      | 1,394                     |
| Vertex Bioenergy Laco                               | France         | 2 032                             | 38 269                     | 18 702                    |
| Connatro Morains Plant                              | Eranco         | 14                                | 79                         | 10,702                    |
|                                                     | France         | 14                                | 78                         | 42                        |
|                                                     | France         | 0                                 | 0                          | 0                         |
| Nesle Tereos Plant                                  | France         | 0                                 | 0                          | 0                         |
| Lillers Tereos Plant                                | France         | 24                                | 425                        | 325                       |
| Ryssen Akciiks S.A.S., Loon-Plage<br>(CropEnergies) | France         | 24                                | 425                        | 325                       |
| Lillebone tereos Plant                              | France         | 43                                | 559                        | 172                       |
| Vertex Bioenergy                                    | Spain          | 25,213                            | 0                          | 0                         |
| Vertex Bioenergy Babilafuente                       | Spain          | 142,604                           | 347,467                    | 3,528                     |
| Vertex Bioenergy Bioetanol Galicia SA               | Spain          | 48,739                            | 157,321                    | 39,219                    |
| Alst Toroos Syral                                   | Belgium        | 12                                | 338                        | 105                       |
| Also Group Ghent                                    | Belgium        | 13                                | 184                        | 160                       |
| Alco Energy Rotterdam BV                            | Netherlands    | 0                                 | 0                          | 107                       |
|                                                     | Germany        | 0                                 | 0                          | 107                       |
| CropEnergies Pieethanel CmbH                        | Germany        | 54                                | 904                        | 162                       |
| Vorbio Ethanol Zarbig GmbH & Co. KG                 | Germany        | 54                                | 894                        | 162                       |
| BrüggemannAlcohol                                   | Germany        | 176                               | 2 118                      | 819                       |
| Barby Plant (Cargill)                               | Germany        | 24                                | 322                        | 24                        |
| Fuel 21 Klein Wanzleben Refinery                    | Germany        | 44                                | 514                        | 24                        |
| Verbio Ethanol Schwedt GmbH & Co. KG                | Germany        | 125                               | 1,472                      | 224                       |
| Manchester Biorefinery (Cargill/Royal Nedalco)      | UK             | 14,293                            | 62,770                     | 28                        |
| Vivergo Fuels                                       | UK             | 68                                | 705                        | 74                        |
| Ensus UK                                            | UK             | 750                               | 4,093                      | 0                         |
| Pischelsdorf Biorefinery                            | Austria        | 75                                | 529                        | 262                       |
| Bioetanol AEG                                       | Poland         | 16                                | 73                         | 16                        |
| Bioetanol AEG                                       | Poland         | 91                                | 880                        | 188                       |
| Ima Polska                                          | Poland         | 10                                | 65                         | 21                        |
| Goswinowice Ethanol Plant (Bioagra S.A).            | Poland         | 338                               | 5,240                      | 2,039                     |
| Agrar-beta                                          | Hungary        | 1,821                             | 29,406                     | 15,337                    |
| Pannonia Bio Zrt.                                   | Hungary        | 4,230                             | 59,292                     | 30,149                    |
| Hungrana Bioeconomy Company                         | Hungary        | 7,942                             | 104,295                    | 48,217                    |
| Almagest AD                                         | Bulgaria       | 23,314                            | 219,866                    | 83,077                    |
| Essentica Ethanol Factory                           | Bulgaria       | 17,142                            | 173,195                    | 68,333                    |
| Ethanol Energy                                      | Czech Republic | 0                                 | 0                          | 0                         |
| Anora Group Oyj                                     | Finland        | 563                               | 389                        | 0                         |
| Hameenlinna Bionolix Plant (St1 Biofuels<br>Oy)     | Finland        | 12                                | 12                         | 0                         |
| Lahti Etanolix Plant (St1 Biofuels Oy)              | Finland        | 21                                | 21                         | 0                         |
| St1 Biofuels Oy                                     | Finland        | 0                                 | 0                          | 0                         |
| Kurana UAB                                          | Lithuania      | 216                               | 2.829                      | 346                       |
| FNVIRAL                                             | Slovakia       | 6 951                             | 77 051                     | 29 141                    |
| Landsmanne Agroetanol A R                           | Sweden         | 90                                | 647                        | 0                         |
| Lantmännen Maskin AB                                | Sweden         | 0                                 | 0                          | 0                         |
|                                                     |                | tot                               | 1,296,822                  | 355,856                   |



## 3.1.2 Scenario 2 – 150 km distance for biomass supply

Figure 32 and Figure 33 display the outputs that were produced considering second-generation bioethanol plants (both operational and planned/under construction), areas of 150km radius for biomass supply, and switchgrass and miscanthus attainable yields on underutilized lands. A total annual production of 3,113,382 and 1,302,401 dry tons is estimated for switchgrass and miscanthus, respectively. Five case studies met or exceeded the threshold value of 100,000 tons, of which one located in Romania, one in Spain, two in Slovakia and one in Poland (Table 19).



Figure 32. Switchgrass attainable yield in European underutilized lands, second-generation bioethanol plants and 150 km supply radius.

# 🌀 BIKE



Figure 33. Miscanthus attainable yield in European underutilized lands, 2G bioethanol plants and 150 km supply radius.

| Name of the plant            | Status      | Country  | Underutilized<br>lands [hectares] | Switchgrass<br>[t DW/year] | Miscanthus<br>[t DW/year] |
|------------------------------|-------------|----------|-----------------------------------|----------------------------|---------------------------|
| Crescentino Bioethanol Plant | Operational | Italy    | 495                               | 7,617                      | 4,097                     |
| AustroCel Hallein            | Operational | Austria  | 160                               | 261                        | 83                        |
| Futurol ARD                  | Operational | France   | 182                               | 2,071                      | 738                       |
| Futurol IFP                  | Operational | France   | 324                               | 4,197                      | 1,753                     |
| Clariant AG                  | Operational | Germany  | 49                                | 123                        | 25                        |
| Clariant Products RO         | Operational | Romania  | 79,901                            | 1,131,775                  | 500,168                   |
| Inibicon                     | Operational | Denmark  | 53                                | 700                        | 42                        |
| Gothenburg Ethanol Plant     | Operational | Sweden   | 3,243                             | 17,110                     | 12                        |
| Borregaard Industries AS     | Operational | Norway   | 1,278                             | 3,769                      | 0                         |
| Ornskoldsvik SEKAB           | Operational | Sweden   | 0                                 | 0                          | 0                         |
| St 1 Bionolix                | Operational | Finland  | 3,476                             | 6,284                      | 0                         |
| Chemopolis Oy                | Operational | Finland  | 0                                 | 0                          | 0                         |
| Etanolix Vantaa              | Operational | Finland  | 1,099                             | 4,749                      | 0                         |
| Sainc Energy Limited         | Planned     | Spain    | 105,049                           | 630,856                    | 269,461                   |
| RYAM                         | Planned     | France   | 1,708                             | 27,685                     | 9,999                     |
| Bioskoh                      | Planned     | Slovakia | 28,739                            | 341,731                    | 120,733                   |
| Envirals Leopoldov           | Planned     | Slovakia | 20,966                            | 240,042                    | 106,548                   |
| Jedlicze Site                | Planned     | Poland   | 42,496                            | 544,118                    | 229,692                   |
| Clariant Technology          | Planned     | Bulgaria | 5,799                             | 59,268                     | 16,270                    |
| INA Ethanol                  | Planned     | Croatia  | 15,635                            | 89,815                     | 42,739                    |
| RE Energy                    | Planned     | Denmark  | 53                                | 700                        | 42                        |
| Cellulonix Pietrarsaari      | Planned     | Finland  | 848                               | 512                        | 0                         |
| St1 Cellulonix               | Planned     | Finland  | 0                                 | 0                          | 0                         |
| Nordfuel biorefinery         | Planned     | Finland  | 0                                 | 0                          | 0                         |
| Cellulonix Follum            | Planned     | Norway   | 0                                 | 0                          | 0                         |
|                              |             |          | tot                               | 3,113,382                  | 1,302,401                 |

| Table 19. Switchgrass and Miscanthus | s potential produ | iction within 2 | 150 km distance fro | om operational 2G eti | hanol plants. |
|--------------------------------------|-------------------|-----------------|---------------------|-----------------------|---------------|
|                                      |                   |                 |                     |                       |               |

For first-generation bioethanol plants, expanding the supply radius to 150 km resulted in a total



estimated annual production of 7,164,698 and 2,186,558 dry tons of switchgrass and miscanthus, respectively. Twelve case studies exceeded the threshold value of 100,000 tons, of which one located in France, three in Spain, two in UK, three in Hungary, two in Bulgaria and one in Slovakia (Table 20).

| Name of the plant                                | Country        | Underutilized<br>lands [hectares] | Switchgrass<br>[t DW/year] | Miscanthus<br>[t DW/year] |
|--------------------------------------------------|----------------|-----------------------------------|----------------------------|---------------------------|
| IMA, Bertolino                                   | Italy          | 1637                              | 0                          | 14,826                    |
| Caviro Distillerie SRL                           | Italy          | 1093                              | 10590                      | 4719                      |
| Silicompa                                        | Italy          | 912                               | 8083                       | 3651                      |
| Vertex Bioenergy, Lacq                           | France         | 67030                             | 787,757                    | 320,255                   |
| Connatre-Morains Plant                           | France         | 630                               | 8,677                      | 3,150                     |
| Origny Tereos Plant                              | France         | 144                               | 1,934                      | 781                       |
| Nesle Tereos Plant                               | France         | 251                               | 3,552                      | 1,435                     |
| Lillers Tereos Plant                             | France         | 60                                | 425                        | 325                       |
| Ryssen Akciiks S.A.S., Loon-Plage (CropEnergies) | France         | 60                                | 425                        | 325                       |
| Lillebone tereos Plant                           | France         | 264                               | 4,044                      | 1,151                     |
| Vertex Bioenergy                                 | Spain          | 374086                            | 191,345                    | 240,783                   |
| Vertex Bioenergy Babilafuente                    | Spain          | 345461                            | 2,131,886                  | 279,330                   |
| Vertex Bioenergy Bioetanol Galicia SA            | Spain          | 283616                            | 585,146                    | 166,53 <mark>2</mark>     |
| BioWanze S.A. (CropEnergies)                     | Belgium        | 451                               | 4,957                      | 1,901                     |
| Aalst Tereos-Syral                               | Belgium        | 229                               | 2,271                      | 1,040                     |
| Alco Group, Ghent                                | Belgium        | 90                                | 996                        | 419                       |
| Alco Energy Rotterdam BV                         | Netherlands    | 529                               | 5,397                      | 1,991                     |
| EAL Euro Alkohol-GmbH                            | Germany        | 301                               | 1,893                      | 685                       |
| CropEnergies Bioethanol GmbH                     | Germany        | 304                               | 4,828                      | 1,538                     |
| Verbio Ethanol Zorbig GmbH & Co. KG              | Germany        | 471                               | 6,422                      | 1,924                     |
| BrüggemannAlcohol                                | Germany        | 2554                              | 31,712                     | 10,567                    |
| Barby Plant (Cargill)                            | Germany        | 384                               | 4,926                      | 1,375                     |
| Fuel 21 Klein Wanzleben Refinery (Nordzucker)    | Germany        | 211                               | 2,870                      | 567                       |
| Verbio Ethanol Schwedt GmbH & Co. KG             | Germany        | 5349                              | 62,362                     | 22,441                    |
| Manchester Biorefinery (Cargill/Royal Nedalco)   | UK             | 66044                             | 240,431                    | 222                       |
| Vivergo Fuels                                    | UK             | 1101                              | 7,643                      | 137                       |
| Ensus UK                                         | UK             | 51827                             | 179,926                    | 98                        |
| Pischelsdorf Biorefinery                         | Austria        | 1636                              | 20,376                     | 8,194                     |
| Bioetanol AEG                                    | Poland         | 374                               | 4,761                      | 981                       |
| Bioetanol AEG                                    | Poland         | 355                               | 4,467                      | 916                       |
| Ima Polska                                       | Poland         | 847                               | 10,737                     | 2,248                     |
| Goswinowice Ethanol Plant (Bioagra S.A).         | Poland         | 513                               | 7,972                      | 2,994                     |
| Agrar-beta                                       | Hungary        | 19813                             | 272,385                    | 143,277                   |
| Pannonia Bio Zrt.                                | Hungary        | 21616                             | 288,697                    | 137,228                   |
| Hungrana Bioeconomy Company                      | Hungary        | 24382                             | 326,583                    | 155,270                   |
| Almagest AD                                      | Bulgaria       | 89480                             | 754,676                    | 253,316                   |
| Essentica Ethanol Factory                        | Bulgaria       | 96382                             | 877,134                    | 288,726                   |
| Ethanol Energy                                   | Czech Republic | 185                               | 2,147                      | 596                       |
| Anora Group Oyj                                  | Finland        | 3237                              | 3,092                      | 0                         |
| Hameenlinna Bionolix Plant (St1 Biofuels Oy)     | Finland        | 408                               | 594                        | 0                         |
| Lanti Etanolix Plant (St1 Biofuels Oy)           | Finland        | 21                                | 21                         | 0                         |
| St1 Biotuels Oy                                  | Finland        | 330                               | 1,600                      | 0                         |
|                                                  | Lithuania      | 5,490                             | 58,/28                     | 5,763                     |
|                                                  | SIOVAKIA       | 20,529                            | 236,971                    | 104,881                   |
| Lantmannen Agroetanoi A.B.                       | Sweden         | 621                               | 3,259                      | U                         |
|                                                  | sweden         | U                                 | U                          | U                         |
|                                                  |                | tot                               | 7,164,698                  | 2,186,558                 |

 Table 20. Switchgrass and Miscanthus potential production within 150 km distance from first-generation ethanol plants.



Table 21 and Table 22 represent a list of the most promising case studies identified for scenario 1 and scenario 2, respectively. Only the highest values for potential dry biomass production given by switchgrass have been included. A conversion factor of 174.5 L EtOH/t dry switchgrass has been used for calculation of potential bioethanol production for each case study (Larnaudie et al., 2022). We assumed it would be possible to achieve the estimated values of ethanol production by the year 2030 for the second-generation ethanol plants, and by the year 2040 for the first-generation ethanol plants.

| Name of refinery                  | Type of<br>refinery   | Country  | Supply<br>distance | Target crop | Potential dry<br>biomass<br>production<br>(tons/year) | Potential<br>bioethanol<br>production<br>(tons/year) | Year |
|-----------------------------------|-----------------------|----------|--------------------|-------------|-------------------------------------------------------|------------------------------------------------------|------|
| Clariant Products                 | Second-<br>generation | Romania  | 70 km              | Switchgrass | 498,623                                               | 68,651                                               | 2030 |
| Vertex Bioenergy<br>Babilafuente  | First-<br>generation  | Spain    | 70 km              | Switchgrass | 347,467                                               | 47,839                                               | 2040 |
| Vertex Bioenergy<br>Galicia       | First-<br>generation  | Spain    | 70 km              | Switchgrass | 157,321                                               | 21,660                                               | 2040 |
| Hungrana<br>Bioeconomy<br>Company | First-<br>generation  | Hungary  | 70 km              | Switchgrass | 104,295                                               | 14,359                                               | 2040 |
| Almagest AD                       | First-<br>generation  | Bulgaria | 70 km              | Switchgrass | 219,866                                               | 30,271                                               | 2040 |
| Essentica Ethanol<br>Factory      | First-<br>generation  | Bulgaria | 70 km              | Switchgrass | 173,195                                               | 23,846                                               | 2040 |

| Tahlo 21 Sconario 1. summar | v of promising case s | tudios idontifiod and i | corresponding notentia | I hippthanal production  |
|-----------------------------|-----------------------|-------------------------|------------------------|--------------------------|
| Tuble 21. Scenario 1. Summu | y oj promising cuse s | tuules luentijieu unu   | concesponding potentia | i bioethunoi production. |



Table 22. Scenario 2: summary of promising case studies identified and corresponding potential bioethanol production.

| Name of refinery                                        | Type of refinery      | Country  | Supply<br>distance | Target crop | Potential dry<br>biomass<br>production<br>(tons/year) | Potential<br>bioethanol<br>production<br>(tons/year) | Year |
|---------------------------------------------------------|-----------------------|----------|--------------------|-------------|-------------------------------------------------------|------------------------------------------------------|------|
| Clariant Products                                       | Second-<br>generation | Romania  | 150 km             | Switchgrass | 1,131,775                                             | 155,823                                              | 2030 |
| Sainc Energy<br>Limited                                 | Second-<br>generation | Spain    | 150 km             | Switchgrass | 630,856                                               | 86,857                                               | 2030 |
| Bioskoh                                                 | Second-<br>generation | Slovakia | 150 km             | Switchgrass | 341,731                                               | 47,050                                               | 2030 |
| Envirals<br>Leopoldov                                   | Second-<br>generation | Slovakia | 150 km             | Switchgrass | 240,042                                               | 33,049                                               | 2030 |
| Jedlicze Site                                           | Second-<br>generation | Poland   | 150 km             | Switchgrass | 544,118                                               | 74,914                                               | 2030 |
| Vertex Bioenergy,<br>Lacq                               | First-<br>generation  | France   | 150 km             | Switchgrass | 787,757                                               | 108,459                                              | 2040 |
| Vertex Bioenergy                                        | First-<br>generation  | Spain    | 150 km             | Switchgrass | 191,345                                               | 26,344                                               | 2040 |
| Vertex Bioenergy<br>Babilafuente                        | First-<br>generation  | Spain    | 150 km             | Switchgrass | 2,131,886                                             | 293,519                                              | 2040 |
| Vertex Bioenergy<br>Bioetanol Galicia<br>SA             | First-<br>generation  | Spain    | 150 km             | Switchgrass | 585,146                                               | 80,563                                               | 2040 |
| Manchester<br>Biorefinery<br>(Cargill/Royal<br>Nedalco) | First-<br>generation  | UK       | 150 km             | Switchgrass | 240,431                                               | 33,103                                               | 2040 |
| Ensus UK                                                | First-<br>generation  | UK       | 150 km             | Switchgrass | 179,926                                               | 24,772                                               | 2040 |
| Agrar-beta                                              | First-<br>generation  | Hungary  | 150 km             | Switchgrass | 272,385                                               | 37,502                                               | 2040 |
| Pannonia Bio Zrt.                                       | First-<br>generation  | Hungary  | 150 km             | Switchgrass | 288,697                                               | 39,748                                               | 2040 |
| Hungrana<br>Bioeconomy<br>Company                       | First-<br>generation  | Hungary  | 150 km             | Switchgrass | 326,583                                               | 44,964                                               | 2040 |
| Almagest AD                                             | First-<br>generation  | Bulgaria | 150 km             | Switchgrass | 754,676                                               | 103,904                                              | 2040 |
| Essentica Ethanol<br>Factory                            | First-<br>generation  | Bulgaria | 150 km             | Switchgrass | 877,134                                               | 120,764                                              | 2040 |
| Enviral                                                 | First-<br>generation  | Slovakia | 150 km             | Switchgrass | 236,971                                               | 32,626                                               | 2040 |

In the case of scenario 1, about 68,600 tons of bioethanol could be produced by providing switchgrass at a 70 km supply distance from the existing second-generation bioethanol plant run by Clariant, in Romania. When considering to supply biomass also to the existing first-generation bioethanol facilities (possibly upgraded to second-generation by 2040), the amount could be tripled (around 207,000 tons). In the case of Scenario 2, with a 150 km of supply distance, around 398,000 tons of bioethanol could be produced by existing second-generation bioethanol plants.



This amount would jump to about 1.3 million tons if also fist-generation bioethanol facilities are taken into consideration.



## 3.2 Castor oil for renewable diesel

The following table provides a summary of outputs obtained from the assessment of castor bean case study.

| Output | Target crop | Target area        | Target<br>biorefineries | Scenario/supply distance |
|--------|-------------|--------------------|-------------------------|--------------------------|
| 1      | Castor bean | Mediterranean area | HVO                     | Scenario 1 - 230 km      |
| 2      | Castor bean | Mediterranean area | Biodiesel               | Scenario 1 - 230 km      |
| 3      | Castor bean | Mediterranean area | HVO, Biodiesel          | Scenario 2 - 500 km      |

Table 23. Summary of the outputs obtained from data elaboration of castor bean case study.

The values obtained from literature regarding castor bean seed yield in mediterranean countries – 1.35 tons/ha in Spain, 1.77 tons/ha in Italy and 2.24 tons/ha in Greece – were overlaid to the map of underutilized lands retrieved from the BIOPLAT platform and the map of biorefineries created for this project. Considering supply distances of 230 km and 500 km from biorefineries, potential oil production was calculated. A minimum annual oil production of 20,000 tons was established as a threshold to identify the most promising case studies. Results are shown in the following sections.

#### 3.2.1 Scenario 1 – 230 km distance from biorefineries for biomass supply

Figure 34 displays the output that was produced considering HVO plants (both operational and planned), areas with 230 km radius for biomass supply, and estimated castor seed yields in Spain (1.35 tons/ha) and Italy (1.77 tons/ha). It is important to highlight that, for some of the biorefineries, the area of biomass supply has been adjusted to include a bigger proportion of the nearby underutilized areas, rather than being centered in the biorefinery itself. A total oil production of 360,811 t/y is estimated for the five operational HVO plants considered in the assessment. Three out of the four evaluated case studies resulted as promising as they met or exceeded the set threshold value of 20,000 tons of annual oil production. The case studies located in Spain – represented by the two operational HVO plants owned by CEPSA and the HVO facility planned by REPSOL– have an estimated annual oil production of 136,815 tons and 191,876 tons, respectively. The case study located in Livorno (Italy) – represented by the HVO facility planned by ENI – has an estimated annual oil production of 29,411 tons (Table 24).





Figure 34. HVO biorefineries in Mediterranean regions, 230 km supply radius and castor mean seed yield.

| Code | Name of the plant                             | Underutilized<br>lands (hectares) | Mean seed yield<br>(tons/ha) | Mean oil<br>content (%) | Oil production(t/y) |  |
|------|-----------------------------------------------|-----------------------------------|------------------------------|-------------------------|---------------------|--|
| 1    | Eni raffineria di Gela                        | 3,243                             | 1.77                         | 47.2                    | 2,709               |  |
| 2    | La Ribida Energy Park<br>(CEPSA)              | 217.477                           | 1 35                         | 46.6                    | 136 815             |  |
| 3    | Abengoa Biofuel Plant<br>(CEPSA)              | ,                                 |                              |                         |                     |  |
| 4    | Complejo Industrial de<br>Cartagena de Repsol | 305,001                           | 1.35                         | 46.6                    | 191,876             |  |
| 5    | Eni raffineria di Livorno                     | 35,204                            | 1.77                         | 47.2                    | 29,411              |  |
|      |                                               |                                   |                              | tot                     | 360,811             |  |

Table 24. Castor bean oil potential production within a 230 km supply radius from HVO refineries.

Figure 35 shows the output that was produced considering three biodiesel plants located in EU mediterranean regions, areas with 230 km radius for biomass supply, and the estimated castor seed yields in Spain (1.35 tons/ha), Italy (1.77 tons/ha) and Greece (2.24 tons/ha). A total oil production potential of 609,853 t/y is estimated. The case study located in Spain – represented by the Biocom refinery – exceeds the threshold value of 20,000 tons annual production with an estimated oil production of 336,230 t/y. The case study located in Greece – represented by the Agroinvest refinery – also gave promising results with an estimated annual oil production of 267,168 tons.

## 🌀 ВІКЕ



Figure 35. Biodiesel refineries in Mediterranean regions, 230 km supply radius and castor mean seed yield.

| Code | Name of the<br>plant | Underutilized<br>lands (hectares) | Mean seed yield<br>(tons/ha) | Mean oil<br>content (%) | Oil production(t/y) |
|------|----------------------|-----------------------------------|------------------------------|-------------------------|---------------------|
| 6    | Biocom energia       | 534,462                           | 1.35                         | 46.6                    | 336,230             |
| 7    | Greenswitch          | 7,727                             | 1.77                         | 47.2                    | 6,455               |
| 8    | Agroinvest s.a.      | 216,857                           | 2.24                         | 55.0                    | 267,168             |
|      |                      |                                   |                              | tot                     | 609,853             |

## 3.2.2 Scenario 2 – 500 km distance from biorefineries for biomass supply

Figure 36 displays the output that was produced considering 4 biorefineries – two HVO plants in Spain, one HVO plant in Italy and one biodiesel plant in Greece – areas of 500 km radius for biomass supply, and the estimated castor seed yields in Spain (1.35 tons/ha), Italy (1.77 tons/ha) and Greece (2.24 tons/ha). The three case studies covered all of the underutilized lands located in the mediterranean countries and all exceeded the set threshold value of 20,000 tons annual oil production. In particular, the case study located in Spain has an estimated annual oil production of 927,695 tons, the case study located in Italy has an estimated annual oil production of 63,103 tons, the case study located in Greece has an estimated annual oil production of 990,798 tons (Table 26).





Figure 36. HVO and biodiesel refineries in Mediterranean regions, 500 km supply radius and castor mean seed yield.

| Code | Name of the plant                | Underutilized<br>lands (hectares) | Mean seed<br>yield<br>(tons/ha) | Mean oil<br>content<br>(%) | Oil production(t/y) |
|------|----------------------------------|-----------------------------------|---------------------------------|----------------------------|---------------------|
| 1    | Eni raffineria di Gela           | 75,533                            | 1.77                            | 47.2                       | 63,103              |
| 2    | La Ribida Energy Park<br>(CEPSA) | 1 474 629                         | 1 25                            | 16 G                       | 027.605             |
| 3    | Abengoa biofuel plant<br>(CEPSA) | 1,474,038                         | 1.35                            | 40.0                       | 927,695             |
| 8    | Agroinvest s.a.                  | 1,550,171                         | 2.24                            | 55.0                       | 990,798             |
|      |                                  |                                   |                                 | tot                        | 1,081,596           |

Table 26. Castor bean oil potential production within a 500 km supply radius from HVOI and biodiesel refineries.

Table 27 represents a summary of the most promising case studies identified for scenario 1 and scenario 2. Potential HVO and biodiesel production from estimated castor oil production has been calculated considering conversion factors of 0.7 and 0.85 trenewable diesel/toil, respectively. The latter were identified from conversion factors of the existing refineries included in the assessment. We assumed that estimated values of HVO and biodiesel production would be feasible to achieve by the year 2030.



| Name of refinery                              | Type of refinery | Country | Supply<br>distance | Potential oil<br>production<br>(tons/year) | Potential<br>HVO/biodiesel<br>production<br>(tons/year) | Year |
|-----------------------------------------------|------------------|---------|--------------------|--------------------------------------------|---------------------------------------------------------|------|
| CEPSA plants                                  | HVO              | Spain   | 230 km             | 136,815                                    | 95,771                                                  | 2030 |
| Complejo Industrial de<br>Cartagena de Repsol | HVO              | Spain   | 230 km             | 191,876                                    | 134,313                                                 | 2030 |
| Eni raffineria di Livorno                     | HVO              | Italy   | 230 km             | 29,411                                     | 20,588                                                  | 2030 |
| Biocom energia                                | Biodiesel        | Italy   | 230 km             | 336,230                                    | 285,796                                                 | 2030 |
| Agroinvest s.a.                               | Biodiesel        | Greece  | 230 km             | 267,168                                    | 227,093                                                 | 2030 |
| Eni raffineria di Gela                        | HVO              | Italy   | 500 km             | 63,103                                     | 44,172                                                  | 2030 |
| CEPSA plants                                  | HVO              | Spain   | 500 km             | 927,695                                    | 649,387                                                 | 2030 |
| Agroinvest s.a.                               | Biodiesel        | Greece  | 500 km             | 990,798                                    | 842,178                                                 | 2030 |

Table 27. Summary of most promising case studies identified and potential HVO/biodiesel production from castor oil.

Considering a supply radius of 230 km, the cultivation of castor in underutilized lands of mediterranean countries could bring to the production of vegetable oil that can be processed in existing biorefinery to produce around 250,672 tons of HVO and 512,889 tons of biodiesel. Considering a supply radius of 500 km, the estimated production would be of around 693,559 tons of HVO and 842,178 tons of biodiesel.

# 🌀 BIKE

## 3.3 Brassica Carinata oil for renewable diesel

The following table provides a summary of the outputs obtained from the assessment of brassica carinata case study.

| Output | Target crop       | Target area        | Target Scenario<br>biorefineries |                               | Supply<br>distance |
|--------|-------------------|--------------------|----------------------------------|-------------------------------|--------------------|
| 1      | Brassica carinata | Mediterranean area | HVO<br>operational               | Brassica summer<br>cover crop | 230 km             |
| 2      | Brassica carinata | Mediterranean area | HVO planned                      | Brassica summer<br>cover crop | 230 km             |
| 3      | Brassica carinata | Mediterranean area | Biodiesel                        | Brassica summer<br>cover crop | 230 km             |
| 4      | Brassica carinata | Mediterranean area | HVO, Biodiesel                   | Brassica summer<br>cover crop | 500 km             |
| 5      | Brassica carinata | Mediterranean area | HVO, Biodiesel                   | Brassica winter cover<br>crop | 230 km             |

Table 28. Summary of the outputs obtained from data elaboration of brassica carinata case study.

The results of brassica carinata yield modeling, which was performed using data from the GAEZ data portal, are displayed in the map in Figure 37. Brassica attainable seed yield ranges from 0 to 4.2 tons per hectare. On the same line of castor bean case study, a value of 20,000 tons of annual oil production was considered a threshold for identification of most promising case studies.



Figure 37. Brassica napus attainable yield in European mediterranean regions.



## 3.3.1 Scenario 1 – Brassica Carinata as a summer cover crop

In the first scenario assessed, brassica carinata has been integrated in the rotational schemes as a summer cover crop. Figure 38 shows the outputs of annual oil potential production considering the operational HVO plants in the mediterranean countries, areas with 230km radius for biomass supply, and a sub-regional administrative division of the countries. The case studies in Spain and Italy showed promising results. In particular, a total annual oil production of 84,218 tons is estimated for the two plants owned by CEPSA in Spain, while a total annual oil production of 31,856 tons is estimated for the plant in Italy owned by ENI (Table 29).



Figure 38. HVO operational refineries, areas of 230 km for biomass supply and estimated annual oil production per sub-region.

| Nr. | Name of the plant             | Surface dedicated<br>to winter cereals<br>[hectares] | Mean brassica<br>yield [tons<br>seeds/hectare] | Seeds<br>[tons/year] | Oil*<br>[tons/year] |
|-----|-------------------------------|------------------------------------------------------|------------------------------------------------|----------------------|---------------------|
| 1   | Eni raffineria di Gela Spa    | 268,675                                              | 1.13                                           | 79,640               | 31,856              |
| 2   | TOTAL La Mede Biorefinery     | 114,950                                              | 1.40                                           | 42,487               | 16,995              |
| 3   | La Ribida Energy Park (CEPSA) |                                                      | 1 4 4                                          | 210,546              | 04 210              |
| 4   | Abengoa Biofuel Plant (CEPSA) | 549,518                                              | 1.44                                           |                      | 04,218              |
|     |                               |                                                      | tot                                            | 332,673              | 133,069             |

Table 29. Estimated annual brassica oil production per HVO operational refinery and 230 km distance for biomass supply.



Figure 39 shows the outputs of annual oil potential production considering the HVO refineries planned in the mediterranean countries, areas with 230km radius for biomass supply, and a sub-regional administrative division of the countries. Both the case studies in Spain and Italy showed promising results. In particular, a total annual oil production of 27,847 tons is estimated for the plant owned by REPSOL in Spain, while a total annual oil production of 71,396 tons is estimated for the plant in Italy owned by ENI (Table 30).



Figure 39. HVO planned refineries, areas of 230 km for biomass supply and estimated annual oil production per sub-region.

| Nr. | Name of the plant                             | Surface<br>dedicated to<br>winter cereals<br>[hectares] | Mean Brassica yield<br>[tons seeds/hectare] | Seeds<br>[tons/year] | Oil*<br>[tons/year] |
|-----|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------|----------------------|---------------------|
| 1   | Eni raffineria di Livorno                     | 837,297                                                 | 0.73                                        | 178,490              | 71,396              |
| 2   | Complejo Industrial de<br>Cartagena de Repsol | 219,684                                                 | 1.25                                        | 69,617               | 27,847              |
|     |                                               |                                                         | tot                                         | 248,107              | 99,243              |

Table 30. Estimated annual brassica oil production per HVO planned refinery and 230 km distance for biomass supply.



Figure 40 shows the outputs of annual oil potential production considering three biodiesel plants in the mediterranean countries, areas with 230km radius for biomass supply, and a sub-regional administrative division of the countries. All the three assessed case studies in Spain, Italy and Greece showed promising results. In particular, a total annual oil production of 88,444 tons is estimated for the plant in Spain (Biocom Energia), a total annual oil production of 75,483 tons is estimated for the plant in Italy (Greenswitch), while a total annual oil production of 33,630 tons is estimated for the plant in Greece (Agroinvest) (Table 31).



Figure 40. Biodiesel refineries, areas of 230 km for biomass supply and estimated annual oil production per sub-region.

| Nr. | Name of the plant | Surface<br>dedicated to<br>winter cereals<br>[hectares] | Mean Brassica yield<br>[tons seeds/hectare] | Seeds<br>[tons/year] | Oil*<br>[tons/year] |
|-----|-------------------|---------------------------------------------------------|---------------------------------------------|----------------------|---------------------|
| 1   | Biocom Energia    | 1,376,591                                               | 0.65                                        | 221,111              | 88,444              |
| 2   | Greenswitch       | 632,139                                                 | 1.16                                        | 188,707              | 75,483              |
| 3   | Agroinvest        | 308,150                                                 | 0.98                                        | 84,075               | 33,630              |
|     |                   |                                                         | tot                                         | 493,893              | 197,557             |

Table 31. Estimated annual brassica oil production per biodiesel refinery.

Finally, a scenario with areas of 500 km radius for biomass supply was assessed (Figure 41). In this scenario, only four plants have been included; however, the outcomes are equivalent and interchangeable to the other biorefineries located inside the supply areas. As expected, expanding the supply radius resulted in higher values of estimated annual oil production. In particular, an annual oil production of 283,997 tons is estimated for the two plants located in Spain, an annual production of 123,733 tons is estimated for the plant located in Italy, an annual production of 69,424 tons is estimated for the plant located in Greece (Table 32)



Figure 41. HVO and biodiesel refineries, areas of 500 km for biomass supply and estimated annual oil production per sub-region.

| Nr. | Name of the plant             | Surface<br>dedicated to<br>winter cereals<br>[hectares] | Mean Brassica<br>yield [tons<br>seeds/hectare] | Seeds<br>[tons/year] | Oil*<br>[tons/year] |  |
|-----|-------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------|---------------------|--|
| 1   | Eni raffineria di Gela Spa    | 1,095,879                                               | 1.04                                           | 285,194              | 123,733             |  |
| 2   | Agroinvest                    | 578,571                                                 | 0.99                                           | 173,561              | 69,424              |  |
| 3   | La Ribida Energy Park (CEPSA) | 2,472,160                                               | 1.05                                           | 709,993              | 283,997             |  |
| 4   | Abengoa Biotuel Plant (CEPSA) |                                                         |                                                |                      |                     |  |
|     |                               |                                                         | tot                                            | 1,168,748            | 477,154             |  |

Table 32. Estimated annual oil production considering brassica as a summer cover crop and a supply radius of 500km from biorefineries.



#### 3.3.2 Scenario 2 – Brassica Carinata as a winter cover crop

In the second scenario assessed, brassica carinata has been integrated in the rotational schemes as a winter cover crop. Since brassica carinata winter variety presents fewer areas of adaptability compared to the summer variety, only four biorefineries have been considered in the assessment – two biodiesel plants and two HVO plants – with a radius of 230 km for biomass supply. Figure 42 shows the outputs of annual oil potential production considering a sub-regional administrative division of the countries. Only the case study located in Greece and represented by the Agroinvest biodiesel plant gave a promising result, with an estimated annual oil production of 23,493 tons.



Figure 42. HVO and biodiesel refineries, areas of 230 km for biomass supply and estimated annual oil production per sub-region

Table 33 reports the estimated production of vegetable oil considering brassica as a winter cover crop and a supply radius of 230km from biorefineries



Table 33. Estimated annual oil production considering brassica as a winter cover crop and a supply radius of 230km from biorefineries

| Nr. | Name of the plant                             | Surface<br>dedicated to<br>corn/cotton<br>[hectares] | Mean Brassica yield<br>[tons seeds/hectare] | Seeds<br>[tons/year] | Oil*<br>[tons/year] |
|-----|-----------------------------------------------|------------------------------------------------------|---------------------------------------------|----------------------|---------------------|
| 1   | Complejo Industrial de<br>Cartagena de Repsol | 4614                                                 | 0.73                                        | 2258                 | 903                 |
| 2   | Biocom Energia                                | 123,352                                              | 0.68                                        | 25,711               | 10,284              |
| 3   | Eni raffineria di Gela                        | 160                                                  | 1.15                                        | 19                   | 8                   |
| 4   | Agroinvest                                    | 207,763**                                            | 0.98                                        | 58,733               | 23,493              |
|     |                                               |                                                      | tot                                         | 86,721               | 34,688              |

\*An oil content of 40% was assumed for calculation of oil production. \*\* Corn and cotton

In light of these results, it can be said that brassica summer variety presents more possibilities of integration in the rotational schemes of mediterranean countries, as well as more areas of suitability, if compared to the winter variety. This combination resulted in more encouraging outputs for the scenario of brassica as a summer cover crop; however, recent studies and trials that were discussed with partners of WP6, show that brassica summer variety may present agronomic traits that could be more advantageous for continental climates rather than for mediterranean climates, including a lower incidence of pest and diseases. Upcoming results from new projects – for instance the Carina project<sup>13</sup> – will allow a better understanding of these important aspects.

Finally, Table 34 represents a summary of the most promising case studies identified for each of the evaluated scenarios. Potential HVO and biodiesel production from estimated castor oil production has been calculated considering conversion factors of 0.7 and 0.85 t renewable diesel /t oil, respectively. The latter were identified from conversion factors of the existing refineries included in the assessment. We assumed that estimated values of HVO and biodiesel production would be feasible to achieve by the year 2030.

<sup>&</sup>lt;sup>13</sup> <u>https://www.carina-project.eu/</u>, Horizon 2020 project, Grant Agreement N° 101081839.





 Table 34. Summary of most promising case studies identified and potential HVO/biodiesel production from brassica oil.

| Name of refinery                                    | Type of refinery | Scenario                         | Country | Supply<br>distance | Oil<br>production<br>(t/y) | HVO/biodiesel<br>production (t/y) | Year |
|-----------------------------------------------------|------------------|----------------------------------|---------|--------------------|----------------------------|-----------------------------------|------|
| Eni raffineria di<br>Gela Spa                       | HVO              | Brassica<br>summer<br>cover crop | Italy   | 230 km             | 31,856                     | 22,299                            | 2030 |
| Eni raffineria di<br>Livorno                        | HVO              | Brassica<br>summer<br>cover crop | Italy   | 230 km             | 71,396                     | 49,977                            | 2030 |
| CEPSA plants                                        | HVO              | Brassica<br>summer<br>cover crop | Spain   | 230 km             | 84,218                     | 58,953                            | 2030 |
| Complejo<br>Industrial de<br>Cartagena de<br>Repsol | HVO              | Brassica<br>summer<br>cover crop | Spain   | 230 km             | 27,847                     | 19,493                            | 2030 |
| Biocom Energia                                      | Biodiesel        | Brassica<br>summer<br>cover crop | Spain   | 230 km             | 88,444                     | 75,177                            | 2030 |
| Greenswitch                                         | Biodiesel        | Brassica<br>summer<br>cover crop | Italy   | 230 km             | 75,483                     | 64,161                            | 2030 |
| Agroinvest                                          | Biodiesel        | Brassica<br>summer<br>cover crop | Greece  | 230 km             | 33,630                     | 28,586                            | 2030 |
| Eni raffineria di<br>Gela Spa                       | HVO              | Brassica<br>summer<br>cover crop | Italy   | 500 km             | 123,733                    | 86,613                            | 2030 |
| Agroinvest                                          | Biodiesel        | Brassica<br>summer<br>cover crop | Greece  | 500 km             | 69,424                     | 59,010                            | 2030 |
| CEPSA plants                                        | HVO              | Brassica<br>summer<br>cover crop | Spain   | 500 km             | 283,997                    | 198,798                           | 2030 |
| Agroinvest                                          | Biodiesel        | Brassica<br>winter cover<br>crop | Greece  | 230 km             | 23,493                     | 19,969                            | 2030 |

As shown in table above, around 151,000 tons of HVO plus 170,000 tons of biodiesel could be produced from brassica carinata grown as a winter cover crop and supplied within a distance of 230 km from existing refineries in the Mediterranean area. Extending the supply distance to 500 km, it is estimated that about 350,000 tons of renewable diesel (HVO plus biodiesel) could be produced within 2030.



## 3.4 Biogas Done Right (BDR) model for biomethane-to-liquid production

As already described in Chapter 2.3, the fourth BIKE case study has been evaluated considering the top European countries identified in terms of number of biogas plants and corresponding installed capacity, and also development of the natural gas grid. The countries in question are Italy, France, German, and UK. The expected biomethane production from upgrading of 90% of the biogas facilities by 2030 has been compared to the estimated biomethane production from cover crops by 2030 (Schellenbach, 2022). The conversion of biomethane to liquid was then assessed.

## 3.4.1 Italy

In Italy are currently operating:

- 27 biomethane plants of 0.21 bcm/year total production capacity.
- 2006 biogas plants of 1339 MW installed capacity.

Distribution of biogas plants in Italian municipalities (Figure 43) presents a significant cluster in the North of the country, where cattle farming and swine breeding are very widespread. Installed capacity ranges from a minimum of 1 to a maximum of 16.2 MW



Figure 43. Installed capacity and distribution of biogas plants in Italy.

A biomethane potential of 2.75 bcm is estimated considering a 90% upgrading efficiency of biogas produced by anaerobic digestion plants, which added to the 0.21 bcm currently produced brings to a total potential of 2.96 bcm. The latter could be totally covered by the 3.2 bcm estimated from implementation of cover cropping practices. As shown in Figure 43, the natural gas grid covers almost all the Italian municipalities; however, a further development is required,



in order to ensure connection to the grid also for the few plants which are currently far from the network and would otherwise be excluded from the chain (i.e., Sardinia). A hypothetical centralized Fisher-Tropsch plant is then estimated to produce 1.62 million cubic meters of liquid per year, while a centralized MeOH plant is estimated to produce 3.53 million cubic meters of liquid per year (Table 35).

| Reference data                                            | Biogas plants*<br>(2017) | Cover crop (2030) |                            |
|-----------------------------------------------------------|--------------------------|-------------------|----------------------------|
| Parameter                                                 | Value                    | Value             | U.M.                       |
| Installed capacity                                        | 1,338,879                | -                 | kWe                        |
| Efficiency of a gas engine                                | 35                       | -                 | %                          |
| Methane heating value                                     | 10                       | -                 | kWh/Nm3                    |
| Methane content of the gas                                | 57                       | -                 | %                          |
| Biomethane potential production (biogas plants upgrading) | 2.75                     | -                 | bcm/year                   |
| Biomethane production (current)                           | 0.21                     | -                 | bcm/year                   |
| Biomethane potential production (total)                   | 2.96                     | 3.2               | bcm/year                   |
| GTL conversion factor (FT)                                | 0.82                     | 0.82              | m3/tCH4                    |
| GTL conversion factor (MeOH)                              | 1.78                     | 1.78              | tMeOH/tCH4                 |
| Liquid potential production (FT)                          | 1.62                     | 1.87              | Mill. m <sup>3</sup> /year |
| Liquid potential production (MeOH)                        | 3.53                     | 3.80              | Mill.m <sup>3</sup> /year  |

Table 35. Calculation of biomethane and liquid fuels potential production in Italy.

\*Calculation of potential biomethane production considered an upgrading of 90% of the biogas plants and a development of the gas network

## 3.4.2 France

In France are currently operating:

- 337 biomethane plants with 0.53 bcm/year total production capacity.
- 797 biogas plants of 182 MW installed capacity.

Distribution of biogas plants in French municipalities (Figure 44) presents a significant cluster in the North of the country. Installed capacity ranges from a minimum of 1 to a maximum of 4.7 MW.



Figure 44. Installed capacity and distribution of biogas plants in France.

A biomethane potential of 0.37 bcm is estimated from upgrading of 90% biogas plants, which added to the 0.53 bcm currently produced brings to a total potential of 0.9 bcm. The latter could be totally covered by the 1.65 bcm estimated from implementation of cover cropping practice. As shown in Figure 44, the natural gas grid is mostly developed in the northern part of the country, where also the most biogas plants are located. Further injection of biomethane in the grid and transport to a hypothetical centralized Fisher-Tropsch plant is estimated to produce 0.49 million cubic meters of liquid per year, while a centralized MeOH plant is estimated to produce 1.08 million cubic meters of liquid per year (Table 36).



Table 36. Calculation of biomethane and liquid fuels potential production in France.

| Reference data                                               | Biogas plants*<br>(2020) | Cover crop<br>(2030) |                            |
|--------------------------------------------------------------|--------------------------|----------------------|----------------------------|
| Parameter                                                    | Value                    | Value                | U.M.                       |
| Installed capacity                                           | 181,906                  | -                    | kWe                        |
| Efficiency of a gas engine                                   | 35                       | -                    | %                          |
| Methane heating value                                        | 10                       | -                    | kWh/Nm³                    |
| Methane content of the gas                                   | 57                       | -                    | %                          |
| Biomethane potential production (upgrading of biogas plants) | 0.37                     | -                    | bcm/year                   |
| Biomethane production (current)                              | 0.53                     | -                    | bcm/year                   |
| Biomethane potential production (total)                      | 0.9                      | 1.65                 | bcm/year                   |
| GTL conversion factor (FT)                                   | 0.82                     | 0.82                 | m³/tCH <sub>4</sub>        |
| GTL conversion factor (MeOH)                                 | 1.78                     | 1.78                 | tMeOH/tCH <sub>4</sub>     |
| Liquid potential production (FT)                             | 0.49                     | 0.97                 | Mill. m <sup>3</sup> /year |
| Liquid potential production (MeOH)                           | 1.08                     | 1.96                 | Mill. m <sup>3</sup> /year |

\*Calculation of potential biomethane production considered an upgrading of 90% of the biogas plants and a development of the gas network

#### 3.4.3 Germany

In Germany are currently operating:

- 198 biomethane plants with 0.89 bcm/year total production capacity.
- 9770 biogas plants of 5926 MW installed capacity.

It was not possible to elaborate and display distribution of facilities in Germany, due to lack of detailed information from available databases. However, Germany represents the most developed and promising country of Europe in terms of overall number of biomethane/biogas plants and corresponding production capacity. An upgrade of 90% the biogas plants is estimated to produce 12.19 bcm of biomethane, which added to the 0.89 bcm already produce would bring to an overall production of 13.08 bcm. The latter is consequently estimated to be much higher compared to the contribution estimated from cover cropping practices (1 bcm). Further injection to the grid and transport to a hypothetical F.T. centralized plant is estimated to produce 7.14 million cubic meters of liquid, while an MeOH plant is estimated to produce 15.56 million cubic meters of liquid.



Table 37. Calculation of biomethane and liquid fuels potential production in Germany.

| Reference data                                               | Biogas plants*<br>(2022) | Cover crop<br>(2030) |                                  |
|--------------------------------------------------------------|--------------------------|----------------------|----------------------------------|
| Parameter                                                    | Value                    | Value                | U.M.                             |
| Installed capacity                                           | 5,926,000                | -                    | kWe                              |
| Efficiency of a gas engine                                   | 35                       | -                    | %                                |
| Methane heating value                                        | 10                       | -                    | kWh/Nm <sup>3</sup>              |
| Methane content of the gas                                   | 57                       | -                    | %                                |
| Biomethane potential production (upgrading of biogas plants) | 12.19                    | -                    | bcm/year                         |
| Biomethane production (current)                              | 0.89                     | -                    | bcm/year                         |
| Biomethane potential production (total)                      | 13.08                    | 1                    | bcm/year                         |
| GTL conversion factor (FT)                                   | 0.82                     | 0.82                 | m <sup>3</sup> /tCH <sub>4</sub> |
| GTL conversion factor (MeOH)                                 | 1.78                     | 1.78                 | tMeOH/tCH4                       |
| Liquid potential production (FT)                             | 7.14                     | 0.59                 | Mill. m <sup>3</sup> /year       |
| Liquid potential production (MeOH)                           | 15.56                    | 1.19                 | Mill. m <sup>3</sup> /year       |

\*Calculation of potential biomethane production considered an upgrading of 90% of the biogas plants and a development of the gas network

#### 3.4.4 UK

In France are currently operating:

- 98 biomethane plants with 0.63 bcm/year total production capacity.
- 404 biogas plants of 343 MW installed capacity.

Biogas plants in UK municipalities (Figure 45) presents are equally distributed in the country. Installed capacity ranges from a minimum of 1 to a maximum of 6.2 MW.



BIKE

Figure 45. Installed capacity and distribution of biogas plants in UK.

A biomethane potential of 0.71 bcm is estimated from upgrading of 90% biogas plants, which added to the 0.63 bcm currently produced brings to a total potential of 1.34 bcm. The latter which could be partially covered by the 0.25 bcm estimated from implementation of cover cropping practices. As shown in Figure 45, the natural gas grid is equally developed in the country, with the exception of the South-western coast and Northern Ireland, and a further development is required on this sense in order to allow inclusion of biogas plants located in these parts of the country. Further injection of biomethane in the grid and transport to a hypothetical centralized Fisher-Tropsch plant is estimated to produce 0.73 million cubic meters of liquid per year, while a centralized MeOh plant is estimated to produce 1.59 million cubic meters of liquid per year (Table 38).

🌀 BIKE

Table 38. Calculation of biomethane and liquid fuels potential production in UK.

| Reference data                                               | Biogas plants*<br><i>(2019)</i> | Cover crop<br><i>(2030)</i> |                                  |
|--------------------------------------------------------------|---------------------------------|-----------------------------|----------------------------------|
| Parameter                                                    | Value                           | Value                       | U.M.                             |
| Installed capacity                                           | 342,798                         | -                           | kWe                              |
| Efficiency of a gas engine                                   | 35                              | -                           | %                                |
| Methane heating value                                        | 10                              | -                           | kWh/Nm <sup>3</sup>              |
| Methane content of the gas                                   | 57                              | -                           | %                                |
| Biomethane potential production (upgrading of biogas plants) | 0.71                            |                             | bcm/year                         |
| Biomethane production (current)                              | 0.63                            |                             | bcm/year                         |
| Biomethane potential production (total)                      | 1.34                            | 0.25                        | bcm/year                         |
| GTL conversion factor (FT)                                   | 0.82                            | 0.82                        | m <sup>3</sup> /tCH <sub>4</sub> |
| GTL conversion factor (MeOH)                                 | 1.78                            | 1.78                        | tMeOH/tCH <sub>4</sub>           |
| Liquid potential production (FT)                             | 0.73                            | 0.15                        | Mill. m <sup>3</sup> /year       |
| Liquid potential production (MeOH)                           | 1.59                            | 0.30                        | Mill. m³/year                    |

\*Calculation of potential biomethane production considered an upgrading of 90% of the biogas plants and a development of the gas network

# 🌀 BIKE

## 5 Discussion

The report examined the replicability potential of the four BIKE case studies in European countries, considering the two selected value chains of cultivation in unused, abandoned or severely degraded lands and productivity increase from improved agricultural practices.

For the first value chain, the layer of underutilized lands provided by BIOPLAT has been used and potential biomass production in these lands has been determined. As already mentioned in the previous chapters, this map considers only those lands that have not shown any sign of human activity in the past five years, while all those lands that are currently in use but severely degraded as well as all those lands that are likelihood to be abandoned in the future are not included.

In this regard, a possible new definition of marginality is currently under revision, and other new factors that are representative of soil status of degradation could be included. Among these factors, the Soil Organic Carbon (SOC) is considered a crucial indicator to determine the degradation of a soil. According to G. Louwagie et al, 2009<sup>14</sup>, around 45% of soils in Europe have a low or very low organic matter content (meaning 0-2% SOC), while 45% have a medium content (meaning 2-6% SOC). Soils with very low SOC were found in the Southern countries, where 74% of the soil has less than 2% organic carbon, but also in parts of France, United Kingdom, Germany, and Sweden<sup>15</sup>.



Figure 46. % agricultural area with less than 1.5 % SOC

As visible in Figure 46, < 1.5 % SOC applies to 40% of the European agricultural area. Moreover, < 0.75 % SOC applies to 7.4% of the European agricultural area, while < 0.5 %SOC applies to 2.2 % of the European agricultural area<sup>16</sup>. In case agricultural land with a Soil Organic Carbon of less

<sup>&</sup>lt;sup>14</sup> G. Louwagie, S. H. Gay, and A. Burrell, Final report on the project 'Sustainable Agriculture and Soil Conservation (SoCo)' JRC Scientific and Technical Reports (Luxembourg: European Commission, Joint Research Centre, 2009).

<sup>&</sup>lt;sup>15</sup> EEA-ETC-DI (Baritz et al, 2021); EEA (2022); SmartSOIL (Merante et al., 2014)

<sup>&</sup>lt;sup>16</sup> <u>https://esdac.jrc.ec.europa.eu/projects/lucas</u>



than 0.75 % SOC would be considered as a severely degraded, around 11.6 million hectares of agricultural land could become suitable for Low ILUC Risk biomass feedstock cultivation, which is a much higher value if compared to the 5.3 million hectares of underutilized lands resulting from BIOPLAT and adopted for this assessment.

For the second value chain, the potential of target crops integration as cover crops in the existing rotational schemes has been evaluated. Sequential cropping system has recently gained attention to combine food and renewable energy production in a sustainable way, as well as for carbon sequestration. As already mentioned in the introductive chapter, the use of cover crops still represents a small percentage of the total EU cropland area, and little is known on the potential of expanding this practice in the countries of Europe. Despite all the limitations – which will be better discussed in the following paragraphs – our work represents an effort to contribute to a better understanding of this practice, which is expected to play a pivotal role in the future.

The identification of biorefineries located in the European countries was conducted combining data from different sources. This process led to the creation of a new layer – which can be considered as one of the most updated layers currently available – that displays all operating and planned biorefineries in Europe.

As regards yield modelling of the target crops, there are some aspects that need to be highlighted and discussed. The GAEZ modelling of switchgrass and miscanthus attainable yield in Europe resulted in higher values for switchgrass compared to miscanthus, while experimental trials usually give higher yield for miscanthus. Consequently, additional research is advised in order to calibrate the model to experimental findings and produce more accurate outcomes. In the assessment of castor bean case study for renewable diesel production, no data was available in GAEZ for castor yield modelling, or on any other modelling tool or platform. Due to this lack of information, only Spain, Greece and Italy have been considered in the assessment, and castor yield was estimated by collecting information from available literature and from results obtained in the context of BIKE open labs. In the upcoming months, however, the GAEZ dataset is expected to be updated, and Castor will be added to the dataset. Following that, it will be possible to update our assessment, providing results that are more accurate and consistent with the methodology adopted for the other case studies. In the assessment of Brassica Carinata case study for renewable diesel production, yield of the target crop has been assimilated to yield of rapeseed (Brassica Napus), available in the GAEZ dataset. However, as for the case of castor, also brassica carinata is expected to be included in the GAEZ dataset in the near future, so that an update of our assessment will also be possible.

Always referring to brassica carinata case study, in this report we proposed two different calendars for application of brassica carinata as a sequential crop in the Mediterranean agroclimatic regions of Europe. During development of crop calendars, some issues have emerged when considering brassica carinata as a cover crop to alternate with the main crop for food/feed production. In particular, the long cycle of this crop – which necessitates from five to seven months to complete the growth and produce the seeds – could represent an obstacle for its integration in the existing rotation schemes. Our suggestion is either to substitute brassica carinata with oilcrops that have shorter growing cycles (i.e., Camelina), or to invest in the development of new genotypes that are able to produce seeds in less than 5/6 months. Furthermore, in this work we considered brassica as a summer cover crop in the mediterranean


area – which was the target area of this case study – while recent findings seem to demonstrate the better suitability and adaptability of summer variety in the continental areas of Europe. Findings from new ongoing projects (e.g., Carina project) will provide new evidence of brassica performances in the different European climates.

In the case study of Biogas Done Right (BDR) model for biomethane-to-fuel production, the estimation of replicability potential was conducted only for Italy, France, Germany, and UK, which resulted as the top countries in terms of development of the natural gas grid, but also number of biomethane and biogas operating plants. To provide a reliable outcome, it was crucial for us to identify the precise location and production capacity of biomethane and biogas plants in the selected countries. For biomethane plants, data were gathered from the map released from EBA (European Biomethane Map, 2021). For biogas plants, data were gathered from different, country-specific databases, which presented different levels of precision and different years of reference. As a final observation, an update of current biogas plants status in terms of number and installed capacity is required. This would allow for a more realistic evaluation of biomethane to fuel production.

# 🌀 ВІКЕ

#### **5** Conclusions

In the case study of perennial crops cultivation for bioethanol production, Romania and Spain showed the most promising results in terms of potential biomass production, given by the good combination of high number of underutilized lands and high expected yields of switchgrass and miscanthus. Considering only the promising case studies identified and a supply radius of 70 km, estimated bioethanol production ranges from 14,359 tons/year (Hungrana Bioeconomy Company, Hungary) to 68,651 tons/year (Clariant Products, Romania). If considering a supply radius of 150 km, estimated bioethanol production ranges from 24,772 tons/year (Ensus, UK) to 293,519 tons/year (Vertex Bioenergy Babilafuente, Spain).

In the case study of castor cultivation for renewable diesel production, only Spain, Italy and Greece have been considered in the assessment. Greece is the country with the highest estimated yield (2.24 tons seeds/ha), followed by Italy (1.77 tons seeds/ha) and Spain (1.35 tons/seeds/ha). Greece and Spain both showed good results in terms of potential oil production, while Italy showed the least promise due to a shortage of underutilized lands in the country. Considering only the promising case studies identified, estimated renewable diesel production ranges from 20,588 tons/year (Eni raffineria di Livorno, Italy) to 227,093 tons/year (Agroinvest s.a, Greece), considering a supply radius of 230 km. Expanding the supply radius to 500 km, estimated renewable diesel production ranges from 44,172 tons/year (Eni raffineria di Gela, Italy) to 842,178 (Agroinvest s.a, Greece).

In the case study of Brassica Carinata for renewable diesel production, two possible scenarios have been assessed, one considering Brassica as a summer cover crop and one considering Brassica as a winter cover crop. In the scenario of Brassica as summer cover crop, Spain showed the most promising results – both with 230 km and 500 km radius for biomass supply – followed by Italy and Greece. In the scenario of Brassica as a winter cover crop, only Greece gave encouraging values of potential oil production, while Spain and Italy did not met or exceed the set threshold value of 20,000 tons of annual oil production. Considering only the promising case studies identified, and the scenario of brassica as a summer cover crop, estimated renewable diesel production ranges from 19,493 tons/year (Complejo Industrial de Cartagena de Repsol, Spain) to 75,177 tons year (Biocom Energia, Spain), within a supply radius of 230 km. Expanding the supply radius to 500 km, estimated renewable diesel production ranges from 59,010 tons/year (Agroinvest s.a., Greece) to 198,798 tons/year (CEPSA refineries, Spain). As anticipated above, for the scenario of brassica as a winter cover crop, the only promising output was given by the case study of Agroinvest refinery, Greece, with an estimated renewable diesel production of 19,969 tons/year.

In the case study of Biogas Done Right (BDR) model for biomethane-to-fuel production, Italy, France, Germany, and UK resulted as the top countries in terms of development of the natural gas grid, but also number of biomethane and biogas operating plants. Germany gave the most promising results in terms of biomethane and liquid potential production by 2030 (13.08 bmc/year of biomethane, 7.14 mill. m<sup>3</sup> of F.T. diesel, 15.56 mill. m<sup>3</sup> of MeOH) followed by Italy (2.96 bcm/year of biomethane, 1.62 mill. m<sup>3</sup> of F.T. diesel, 3.53 mill. m<sup>3</sup> of MeOH), UK (1.34 bcm/year of biomethane, 0.73 mill. m<sup>3</sup> of F.T. diesel, 1.59 mill. m<sup>3</sup> of MeOH), and France (0.9 bcm/year of biomethane, 0.49 mill.m<sup>3</sup> of F.T. diesel, 1.08 mill.m<sup>3</sup> of MeOH).





In conclusion, this study showed that the four BIKE case studies present an encouraging replicability potential in the European countries, even if with some differences and limitations. Around 1.3 mil. tons of bioethanol, 1.5 mil. tons of advanced biofuel from castor oil, and 0.4 mil. tons of advanced biofuel from brassica carinata could be produced by the existing biorefineries in the short-, mid-term. Moreover, in case all existing biogas plants of Germany, Italy, France and UK would be converted to biomethane, this biomethane could generate up to 10 mil. tons of F.T. diesel. The findings confirm that there are significant opportunities to cultivate the selected crops in European agro-ecological zones with sustainable agronomic practices, both in unused lands and in agricultural lands. Even though sustainable biofuels represent an important tool for the decarbonisation of transport, it is key to understand that the promotion of the low ILUC-risk concept may open doors for the integration of new crop types and farming techniques into the EU agricultural landscape, with benefits for soils, climate, and economy that go beyond bioenergy.



### 6 Supplementary data

| Table 39. Li | ist of second-aeneration | bioethanol plants   | nlanned in Fur | ope by 2030. |
|--------------|--------------------------|---------------------|----------------|--------------|
| TUDIC 33. LI | ist of second generation | bioctination plants | prannea ni Ear | ope by 2030. |

| Name                                            | Country  | City         | Owner                                       | Production<br>capacity<br>(t/y) | Notes      |
|-------------------------------------------------|----------|--------------|---------------------------------------------|---------------------------------|------------|
| Sainc Energy Limited                            | Spain    | Cordoba      | Sainc Energy Limited                        | 150,000                         | Commercial |
| RYAM                                            | France   | Sarzay       | RYAM Rayoner<br>Advanced Materials<br>INnc. | 21,000                          | Commercial |
| Bioskoh                                         | Slovakia | Lubietova    | Energochimica                               | 55,000                          | Commercial |
| Envirals Leopoldov Site                         | Slovakia | Leopoldov    | Enviral                                     | 50,000                          | Commercial |
| Jedlicze Site                                   | Poland   | Jedlicze     | ORLEN Poludnie                              | 25,000                          | Commercial |
| Cellulosic Ethanol Plant<br>Clariant Technology | Bulgaria | Toshevo      | Eta Bio                                     | 50,000                          | Commercial |
| INA Ethanol                                     | Croatia  | Sisak        | INA                                         | 55,000                          | Commercial |
| RE Energy                                       | Denmark  | Kalundborg   | RE Energy                                   | 5000                            | Commercial |
| Cellulonix Pietrarsaari                         | Finland  | Pietrarsaari | St1                                         | 40,000                          | Commercial |
| St1 Cellulonix Kajaani                          | Finland  | Kajaani      | St1                                         | 40,000                          | Commercial |
| Nordfuel biorefinery                            | Finland  | Haapavesi    | Kanteleen Voima                             | 65,000                          | Demo plant |
| Cellulonix Follum                               | Norway   | Ringerike    | St1                                         | 40,000                          | Commercial |

# 🌀 BIKE

Table 40. List of first-generation bioethanol plants in Europe and possibility of upgrade to second-generation.

| Name                                                | Country     | City                  | Possibility of upgrade |
|-----------------------------------------------------|-------------|-----------------------|------------------------|
| IMA, Bertolino                                      | Italy       | Trapani               | YES                    |
| Euralcool Mb SRL                                    | Italy       | Napoli                | NO                     |
| Caviro Distillerie SRL                              | Italy       | Faenza                | YES                    |
| Villapana S.p.A.                                    | Italy       | Faenza                | NO                     |
| Silicompa                                           | Italy       | Correggio             | YES                    |
| Etea Group                                          | Italy       | Saluzzo               | NO                     |
| Vertex Bioenergy, Lacq                              | France      | Lacq                  | YES                    |
| Artenay Plant (Tereos)                              | France      | Artenay               | NO                     |
| Cristal Union, Villette-sur-Aube                    | France      | Villette-sur-Aube     | NO                     |
| Connatre-Morains Plant                              | France      | Connatre              | YES                    |
| Origny Tereos Plant                                 | France      | Origny-Sainte-Benoite | YES                    |
| Nesle Tereos Plant                                  | France      | Mesnil-Saint-Nicaise  | YES                    |
| Cristal Union, Sainte Emilie                        | France      | Villers-Faucon        | NO                     |
| Lillers Tereos Plant                                | France      | Lillers               | YES                    |
| Lestrem Starch Biorefinery                          | France      | Lestrem               | NO                     |
| Ryssen Akciiks S.A.S., Loon-Plage<br>(CropEnergies) | France      | Loon-Plage            | YES                    |
| Lillebone tereos Plant                              | France      | Lillebone             | YES                    |
| Roquette-Bioethanol-Beinheim                        | France      | Beinheim              | NO                     |
| Agralco S.Coop.                                     | Spain       | Estella-Lizarra       | NO                     |
| Vertex Bioenergy                                    | Spain       | Cartegena             | YES                    |
| Azucarera del Gualdafeo S.A.                        | Spain       | Salobrena             | NO                     |
| Aceites, Vinos y Alcoholes, S.A. (AVIALSA)          | Spain       | Villarrobledo         | NO                     |
| International de Alcoholes                          | Spain       | Alcazar de san Juan   | NO                     |
| Vertex Bioenergy Babilafuente                       | Spain       | Babilafuente          | YES                    |
| Vertex Bioenergy Bioetanol Galicia SA               | Spain       | Curtis                | YES                    |
| Ferreira Gomes & Filhos                             | Portugal    | Sao PEDRO DE TOMAR    | NO                     |
| BioWanze S.A. (CropEnergies)                        | Belgium     | Wanze                 | YES                    |
| Aalst Tereos-Syral                                  | Belgium     | Aalst                 | YES                    |
| Alco Group, Ghent                                   | Belgium     | Gent                  | YES                    |
| Cargill BV                                          | Netherlands | Terneuzen             | NO                     |
| Alco Energy Rotterdam BV                            | Netherlands | Rotterdam             | YES                    |
| Suiker Unie Vierverlaten                            | Netherlands | Groningen             | NO                     |

## 🌀 BIKE

| L. Breggeman GmbH & CO KG                        | Germany        | Heilbronn, Stadt                | NO  |
|--------------------------------------------------|----------------|---------------------------------|-----|
| BERKEL Pfalzische Spritfabrik GmbH & Co,<br>KG   | Germany        | Ludwigshafen am Rhein,<br>Stadt | NO  |
| EAL Euro Alkohol-GmbH                            | Germany        | Lüdinghausen, Stadt             | YES |
| KWST GmbH                                        | Germany        | Hannover, Landeshauptstadt      | NO  |
| CropEnergies Bioethanol GmbH                     | Germany        | Zeitz, Stadt                    | YES |
| Verbio Ethanol Zorbig GmbH & Co. KG              | Germany        | Zorbig, Stadt                   | YES |
| BrüggemannAlcohol                                | Germany        | Wittenberg, Lutherstadt         | YES |
| Barby Plant (Cargill)                            | Germany        | Barby, Stadt                    | YES |
| Fuel 21 Klein Wanzleben Refinery<br>(Nordzucker) | Germany        | Wanzleben-Börde, Stadt          | YES |
| Verbio Ethanol Schwedt GmbH & Co. KG             | Germany        | Schwedt/Oder, Stadt             | YES |
| Agrar Destillerie GmbH                           | Germany        | Neubrandenburg, Stadt           | NO  |
| Suiker Unie GmbH                                 | Germany        | Anklam, Stadt                   | NO  |
| Baltic Distillery                                | Germany        | Dettmannsdorf                   | NO  |
| Manchester Biorefinery (Cargill/Royal Nedalco)   | United Kingdom | Trafford                        | YES |
| ETEA Sedamyl                                     | United Kingdom | Selby                           | NO  |
| Vivergo Fuels                                    | United Kingdom | East Riding of Yorkshire        | YES |
| Pischelsdorf Biorefinery                         | Austria        | Zwentendorf an der Donau        | YES |
| Komers International                             | Poland         | Pruszcz Gdanski                 | NO  |
| Destylarnia Sobieski                             | Poland         | Starogard Gdanski               | NO  |
| Bioetanol AEG                                    | Poland         | Chelmza                         | YES |
| Bioetanol AEG                                    | Poland         | Nowa Wies Wielka                | YES |
| Destylacje Polskie                               | Poland         | Oborniki                        | NO  |
| Ima Polska                                       | Poland         | Murowana Goslina                | YES |
| Akwawit-Brasco SA                                | Poland         | Leszno                          | NO  |
| AWW                                              | Poland         | Zelazkow                        | NO  |
| Podlaskie Gorzelnie SURWIN                       | Poland         | Wohyn                           | NO  |
| Akwawit-Brasco SA                                | Poland         | Wroclaw                         | NO  |
| Cargill                                          | Poland         | Kobierzyce                      | NO  |
| Goswinowice Ethanol Plant (Bioagra S.A).         | Poland         | Nysa                            | YES |
| Amochim                                          | Romania        | Municipiul Slobozia             | NO  |
| Agrar-beta                                       | Hungary        | Dombovar                        | YES |
| Pannonia Bio Zrt.                                | Hungary        | Dunaföldvá                      | YES |
| Hungrana Bioeconomy Company                      | Hungary        | Szabadegyháza                   | YES |

#### Deliverable 3.3 - BIKE project

| <b>(</b> ) E | BIKE |
|--------------|------|
|--------------|------|

| Gyor                                            | Hungary        | Gyor                        | NO  |
|-------------------------------------------------|----------------|-----------------------------|-----|
| Kall Ingredients Kfr                            | Hungary        | Tiszapüspöki                | NO  |
| Zaharni Zavodi                                  | Bulgaria       | -                           | NO  |
| Almagest AD                                     | Bulgaria       | Verinsko                    | YES |
| Essentica Ethanol Factory                       | Bulgaria       | -                           | YES |
| Slovliker                                       | Czech Republic | Kunovice                    | NA  |
| Tereos TTD, a.s.                                | Czech Republic | Kojetìn                     | NO  |
| Chrudim Plant (Tereos)                          | Czech Republic | Chrudim                     | NO  |
| Ethanol Energy                                  | Czech Republic | Vrdy                        | YES |
| Bioferm                                         | Czech Republic | Kolin                       | NO  |
| Dobrovice Plant (Tereos)                        | Czech Republic | Dobrovice                   | NO  |
| Onistar                                         | Estonia        | Rakvere linn                | NO  |
| AS Remedia                                      | Estonia        | Kuusalu vald                | NO  |
| Liviko AS                                       | Estonia        | Tallin                      | NO  |
| Anora Group Oyj                                 | Finland        | Ilmajoki                    | YES |
| Hameenlinna Bionolix Plant (St1 Biofuels<br>Oy) | Finland        | Hameenlinna                 | YES |
| Lahti Etanolix Plant (St1 Biofuels Oy)          | Finland        | Lahti                       | YES |
| St1 Biofuels Oy                                 | Finland        | Hamina                      | YES |
| AB Vilniaus degtine                             | Lithuania      | Vilniaus miesto savivaldybe | NO  |
| Kurana UAB                                      | Lithuania      | Pasvalio rajono savivaldybe | YES |
| Kalsnava Distillery                             | Latvia         | Madonas novads              | NO  |
| ENVIRAL                                         | Slovakia       | Leopoldov                   | YES |
| Gnidava Sugar Plant                             | Ukraine        | -                           | NA  |
| Zarubynskyi spirit plant                        | Ukraine        | -                           | NA  |
| Khorostkivskyi sugar plant                      | Ukraine        | -                           | NA  |
| Luzhanskyi spitit plant                         | Ukraine        | -                           | NA  |
| Dovzhotskyi spirit plant                        | Ukraine        | -                           | NA  |
| Teofiopolskyi sugar plant                       | Ukraine        | -                           | NA  |
| Barskyi spirit plant                            | Ukraine        | -                           | NA  |
| Chervonenskyi spirit plant                      | Ukraine        | -                           | NA  |
| Andrushivskyi spitit plant                      | Ukraine        | -                           | NA  |
| Trostianetskyi spirit plant                     | Ukraine        | -                           | NA  |
| Haisynskyi spirit plant, Interkrait Ltd.        | Ukraine        | -                           | NA  |
| Fazor Ltd.                                      | Ukraine        | -                           | NA  |

| Uzyn sugar factory                 | Ukraine | -                 | NA  |
|------------------------------------|---------|-------------------|-----|
| Popivskyi experimental plant       | Ukraine | -                 | NA  |
| Lokhvytskyi spitir plant           | Ukraine | -                 | NA  |
| Budylskyi Plant, EcoEnergy Ltd.    | Ukraine | -                 | NA  |
| Naumivskyi Spirit plant            | Ukraine | -                 | NA  |
| Ivashkivskyi spirit plant          | Ukraine | -                 | NA  |
| Dublianskyi spirit plant           | Ukraine | -                 | NA  |
| Zhovtnevyi spirit plant            | Ukraine | -                 | NA  |
| Lantmännen Agroetanol A.B.         | Sweden  | Norrköping        | YES |
| Absolut                            | Sweden  | Kristianstad      | NO  |
| Vallée du Loing, Souppes-sur-Loing | France  | Souppes-sur-Loing | NO  |
| Cristal Union, Buchères            | France  | Cristal Union     | NO  |
| British Sugar PLC                  | UK      | Wissington        | NO  |
| Ensus UK                           | UK      | Lasenby           | YES |
| Carbery Group Limited              | Ireland | Cork              | NO  |
| Müllermilch, Leppersdorf           | Germany | Leppersdorf       | NO  |
| Viresol                            | Hungary |                   | NO  |
| Lantmännen Maskin AB               | Sweden  | Växjö             | YES |
| BGW Sp. z o.o.                     | Polland | Rąbczyn           | YES |



#### Table 41. List of HVO plants in Europe.

| Name                                          | Owner       | Country         | City                          | Capacity<br>(t/y) | Status             |
|-----------------------------------------------|-------------|-----------------|-------------------------------|-------------------|--------------------|
| Eni raffineria di Gela Spa                    | Eni         | Italy           | Gela                          | 750,000           | Operational        |
| TOTAL La Mede Biorefinery                     | TOTAL       | France          | Châteauneuf-les-<br>Martigues | 500,000           | Operational        |
| Eni raffineria di Venezia                     | Eni         | Italy           | Venezia                       | 360,000           | Operational        |
| Rotterdam Neste Biorefinery                   | Neste       | Netherla<br>nds | Rotterdam                     | 800,000           | Operational        |
| Abengoa plant                                 | Cepsa       | Spain           | San Roque                     | 50,000            | Operational        |
| La Ribida                                     | Cepsa       | Spain           | Palos de la Frontera          | 50,000            | Operational        |
| Neste Biorefinery in Kilpilahti<br>Refinery   | Neste       | Finland         | Porvoo                        | 190,000           | Operational        |
| UPM Lappeenranta<br>Biorefinery               | UPM         | Finland         | Lappeenranta                  | 130,000           | Operational        |
| SunPine                                       | SunPine     | Sweden          | Pitea                         | 40,000            | Operational        |
| Premraff Goteborg                             | Preem       | Sweden          | Goteboprg                     | 290,000           | Operational        |
| Galp   Refinaria                              | Galp        | Portugal        | Sines                         | N.R.*             | Planned            |
| Eni raffineria di Livorno                     | Eni         | Italy           | Livorno                       | 500,000           | Planned            |
| Complejo Industrial de<br>Cartagena de Repsol | REPSOL      | Spain           | Murcia                        | 250,000           | Planned            |
| SCA biorefinery                               | SCA         | Sweden          | Ostrand                       | 156,000           | Planned            |
| Preemraff Lysekil                             | Preem       | Sweden          | Goteborg                      | 950,000**         | Planned            |
| Greenenergy plant                             | Greenenergy | UK              | Corringham                    | N.R.              | Planned            |
| Fintoil Hamina biorefinery                    | Fintoil     | Finland         | Hamina                        | 78,000            | Planned            |
| UPM Kotka refinery                            | UPM         | Finland         | Kotka                         | 500,000           | Planned            |
| St1 Gothenburg                                | St1 and SCA | Sweden          | Gothenburg                    | 200,000           | Under construction |

\*Not Reported

\*\*m³/y

# 🌀 ВІКЕ

#### Bibliography

- Alcantara, C., Sanchez, S., Pujadas, A., & Saavedra, M. (2009). Brassica species as winter cover crops in sustainable agricultural systems in southern spain. *Journal of Sustainable Agriculture*, *33*(6), 619–635. https://doi.org/10.1080/10440040903073693
- Anastasi, U., Sortino, O., Cosentino, S. L., & Patanè, C. (2015). Seed yield and oil quality of perennial castor bean in a Mediterranean environment. In *International Journal of Plant Production* (Vol. 9, Issue 1). www.ijpp.info
- Barsali, T., Colangeli, M., Traverso, L., & Pulighe, G. (2016). FOSTERING SUSTAINABLE FEEDSTOCK PRODUCTION FOR ADVANCED BIOFUELS ON UNDERUTILISED LAND IN EUROPE D2.2 FEASIBILITY STUDY ITALY TECHNO-ECONOMIC FEASIBILITY CTXI.
- Basili, M., & Rossi, M. A. (2018). Brassica carinata-derived biodiesel production: economics, sustainability and policies. The Italian case. *Journal of Cleaner Production*, 191, 40–47. https://doi.org/10.1016/j.jclepro.2018.03.306
- Brancaccio, E. (2021). *GTL: Small Scale and Modular Technologies for Gas to Liquid Industry*. https://www.oil-gasportal.com/gtl-small-scale-and-modular-technologies-for-gas-toliquid-industry/?print=print
- Cabrales, R. A., Marrugo N., J. L., & Abril Castro, J. L. (2014). RENDIMIENTOS EN SEMILLA Y CALIDAD DE LOS ACEITES DEL CULTIVO DE HIGUERILLA (RICINUS COMMUNIS L.) EN EL VALLE DEL SINÚ, DEPARTAMENTO DE CÓRDOBA.

Capuano, A. (2008). PROYECTO DE I+D RICINUS COMMUNIS L. GERONA. 2008.

- Del Gatto, A., Melilli, M. G., Raccuia, S. A., Pieri, S., Mangoni, L., Pacifico, D., Signor, M., Duca, D., Foppa Pedretti, E., & Mengarelli, C. (2015a). A comparative study of oilseed crops (Brassica napus L. subsp. oleifera and Brassica carinata A. Braun) in the biodiesel production chain and their adaptability to different Italian areas. *Industrial Crops and Products*, 75, 98–107. https://doi.org/10.1016/j.indcrop.2015.04.029
- Del Gatto, A., Melilli, M. G., Raccuia, S. A., Pieri, S., Mangoni, L., Pacifico, D., Signor, M., Duca, D., Foppa Pedretti, E., & Mengarelli, C. (2015b). A comparative study of oilseed crops (Brassica napus L. subsp. oleifera and Brassica carinata A. Braun) in the biodiesel production chain and their adaptability to different Italian areas. *Industrial Crops and Products*, 75, 98–107. https://doi.org/10.1016/j.indcrop.2015.04.029
- Elbersen, &, Bai, Z., Mcallum, I., & Ramos, C. (n.d.). *Deliverable 2.6 Methodological approaches* to identify and map marginal land suitable for industrial crops in Europe.
- Fendrich, A. N., Matthews, F., Van Eynde, E., Carozzi, M., Li, Z., d'Andrimont, R., Lugato, E., Martin, P., Ciais, P., & Panagos, P. (2023). From regional to parcel scale: A high-resolution map of cover crops across Europe combining satellite data with statistical surveys. *Science* of the Total Environment, 873. https://doi.org/10.1016/j.scitotenv.2023.162300
- Hirschmugl, M., Sobe, C., Khawaja, C., Janssen, R., & Traverso, L. (2021). Pan-european mapping of underutilized land for bioenergy production. *Land*, *10*(2). https://doi.org/10.3390/land10020102
- Ismail, S., Abu, S. A., Rezaur, R., & Sinin, H. (2014). *Biodiesel Production from Castor Oil and Its Application in Diesel Engine*. https://doi.org/10.29037/ajstd.18.
- Koutroubas, S. D., Papakosta, D. K., & Doitsinis, A. (1999). Adaptation and yielding ability of castor plant (Ricinus communis L.) genotypes in a Mediterranean climate. In *European Journal of Agronomy* (Vol. 11). www.elsevier.com/locate/eja
- Larnaudie, V., Ferrari, M. D., & Lareo, C. (2022). Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics and environmental



sustainability. *Renewable and Sustainable Energy Reviews, 158*. https://doi.org/10.1016/j.rser.2022.112115

- Lasorella, M. V., Lasorella, M. V, Monti, A., Alexopoulou, E., Riche, A., Sharma, N., Cadoux, S., Van Diepen, K., Elbersen, B., Atzema, A. J., & Elbersen, H. W. (2011). YIELD COMPARISON BETWEEN SWITCHGRASS AND MISCANTHUS BASED ON MULTI-YEAR SIDE BY SIDE COMPARISON IN EUROPE Efthymia Alexopoulou Centre for Renewable Energy Sources and Saving YIELD COMPARISON BETWEEN SWITCHGRASS AND MISCANTHUS BASED ON MULTI-YEAR SIDE BY SIDE COMPARISON BETWEEN SWITCHGRASS AND MISCANTHUS BASED ON MULTI-YEAR SIDE BY SIDE COMPARISON IN EUROPE. https://www.researchgate.net/publication/273456544
- Laureti, D., Fedeli, A. M., Scarpa, G. M., & Marras, G. F. (1998). Performance of castor (Ricinus communis L.) cultivars in Italy. In *Industrial Crops and Products* (Vol. 7).
- Lu, X., Withers, M. R., Seifkar, N., Field, R. P., Barrett, S. R. H., & Herzog, H. J. (2015). Biomass logistics analysis for large scale biofuel production: Case study of loblolly pine and switchgrass. *Bioresource Technology*, 183, 1–9. https://doi.org/10.1016/j.biortech.2015.02.032
- Patanè, C., Cosentino, S. L., Corinzia, S. A., Testa, G., Sortino, O., & Scordia, D. (2019). Photothermal zoning of castor (Ricinus communis L.) growing season in the semi-arid Mediterranean area. *Industrial Crops and Products*, 142. https://doi.org/10.1016/j.indcrop.2019.111837
- Patel, V. R., Dumancas, G. G., Viswanath, L. C. K., Maples, R., & Subong, B. J. J. (2016). Castor oil: Properties, uses, and optimization of processing parameters in commercial production. In *Lipid Insights* (Vol. 9, Issue 1). Libertas Academica Ltd. https://doi.org/10.4137/LPI.S40233
- Seepaul, R., Kumar, S., Iboyi, J. E., Bashyal, M., Stansly, T. L., Bennett, R., Boote, K. J., Mulvaney, M. J., Small, I. M., George, S., & Wright, D. L. (2021). Brassica carinata: Biology and agronomy as a biofuel crop. In *GCB Bioenergy* (Vol. 13, Issue 4, pp. 582–599). Blackwell Publishing Ltd. https://doi.org/10.1111/gcbb.12804
- Zanetti, F., Chieco, C., Alexopoulou, E., Vecchi, A., Bertazza, G., & Monti, A. (2017). Comparison of new castor (Ricinus communis L.) genotypes in the mediterranean area and possible valorization of residual biomass for insect rearing. *Industrial Crops and Products*, *107*, 581–587. https://doi.org/10.1016/j.indcrop.2017.04.055